Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
55af1168
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
55af1168
编写于
12月 20, 2018
作者:
T
Tao Luo
提交者:
GitHub
12月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14966 from jczaja/prv-transpose-mkldnn-reuse-PR
[MKL-DNN] Extending Transpose Op to reuse MKL-dNN primitives
上级
2537ac51
709d9e3c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
138 addition
and
59 deletion
+138
-59
paddle/fluid/operators/transpose_mkldnn_op.cc
paddle/fluid/operators/transpose_mkldnn_op.cc
+14
-59
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+124
-0
未找到文件。
paddle/fluid/operators/transpose_mkldnn_op.cc
浏览文件 @
55af1168
...
...
@@ -32,7 +32,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
PADDLE_ENFORCE
(
is_test
==
true
,
"
Conv
TransposeMKLDNN works only for inference!. Set is_test = True"
);
"TransposeMKLDNN works only for inference!. Set is_test = True"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -47,69 +47,24 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
return
;
}
std
::
vector
<
int
>
nchw_axis
(
ndims
,
0
);
for
(
size_t
i
=
0
;
i
<
nchw_axis
.
size
();
++
i
)
{
nchw_axis
[
i
]
=
i
;
}
std
::
vector
<
int
>
nchw_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
src_md
=
input
->
format
()
!=
mkldnn
::
memory
::
format
::
nchw
?
platform
::
MKLDNNMemDesc
(
nchw_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
())
:
Axis2MemoryDesc
(
nchw_tz
,
nchw_axis
);
this
->
TransposeKernel
(
ctx
.
GetPlace
(),
Axis2MemoryDesc
(
nchw_tz
,
axis
),
src_md
,
output
,
input_data
,
nchw_tz
,
mkldnn_engine
);
}
protected:
mkldnn
::
memory
::
desc
Axis2MemoryDesc
(
std
::
vector
<
int
>&
nchw_tz
,
std
::
vector
<
int
>&
axis
)
const
{
mkldnn_memory_desc_t
mem_fmt
;
mem_fmt
.
primitive_kind
=
mkldnn_memory
;
mem_fmt
.
ndims
=
axis
.
size
();
for
(
unsigned
int
i
=
0
;
i
<
nchw_tz
.
size
();
++
i
)
{
mem_fmt
.
dims
[
i
]
=
nchw_tz
[
i
];
// logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt
.
data_type
=
mkldnn_f32
;
mem_fmt
.
format
=
mkldnn_blocked
;
unsigned
int
total_stride
=
1
;
for
(
int
i
=
nchw_tz
.
size
()
-
1
;
i
>=
0
;
--
i
)
{
mem_fmt
.
layout_desc
.
blocking
.
padding_dims
[
i
]
=
nchw_tz
[
i
];
// logical dimensions (nchw format, regardless physical
// layout)
mem_fmt
.
layout_desc
.
blocking
.
block_dims
[
i
]
=
1
;
mem_fmt
.
layout_desc
.
blocking
.
offset_padding_to_data
[
i
]
=
0
;
// no offset
mem_fmt
.
layout_desc
.
blocking
.
strides
[
0
][
axis
[
i
]]
=
total_stride
;
mem_fmt
.
layout_desc
.
blocking
.
strides
[
1
][
axis
[
i
]]
=
1
;
total_stride
*=
nchw_tz
[
axis
[
i
]];
}
mem_fmt
.
layout_desc
.
blocking
.
offset_padding
=
0
;
// no initial offset
return
mem_fmt
;
}
void
TransposeKernel
(
platform
::
Place
place
,
mkldnn
::
memory
::
desc
md_o
,
mkldnn
::
memory
::
desc
md_i
,
Tensor
*
output
,
const
T
*
data_i
,
std
::
vector
<
int
>&
nchw_dims
,
const
mkldnn
::
engine
&
eng
)
const
{
// Make Memory primitive descriptors
auto
mpd_o
=
mkldnn
::
memory
::
primitive_desc
(
md_o
,
eng
);
auto
mpd_i
=
mkldnn
::
memory
::
primitive_desc
(
md_i
,
eng
);
const
std
::
string
key
=
platform
::
TransposeMKLDNNHandler
::
GetHash
(
nchw_tz
,
axis
,
ctx
.
op
().
Output
(
"Out"
));
auto
data_o
=
output
->
mutable_data
<
T
>
(
place
,
paddle
::
memory
::
Allocator
::
kDefault
,
mpd_o
.
get_size
()
);
platform
::
TransposeMKLDNNHandler
handler
(
nchw_tz
,
axis
,
dev_ctx
,
mkldnn_engine
,
key
);
auto
src
=
mkldnn
::
memory
(
mpd_i
,
(
T
*
)(
data_i
));
auto
dst
=
mkldnn
::
memory
(
mpd_o
,
data_o
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
->
format
(),
platform
::
to_void_cast
<
T
>
(
input_data
));
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
output
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
transpose_src_memory_p
);
auto
r
=
mkldnn
::
reorder
(
src
,
dst
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
({
r
}).
wait
();
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
pipeline
.
push_back
(
*
transpose_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
};
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
55af1168
...
...
@@ -197,6 +197,130 @@ class MKLDNNHandler {
bool
is_reusing_
;
};
class
TransposeMKLDNNHandler
:
public
MKLDNNHandler
{
public:
TransposeMKLDNNHandler
(
std
::
vector
<
int
>&
dims
,
std
::
vector
<
int
>&
axis
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
),
dims_
(
dims
),
axis_
(
axis
),
logical_axis_
(
dims
.
size
(),
0
)
{}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
format
&
fmt
,
void
*
ptr
)
{
auto
local_key
=
key_
+
"@user_src_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
// Make memory descriptor using input format, unless it
// cannot be trusted (nchw) then make up memory fmt manually
for
(
size_t
i
=
0
;
i
<
logical_axis_
.
size
();
++
i
)
{
logical_axis_
[
i
]
=
i
;
}
auto
src_md
=
fmt
!=
mkldnn
::
memory
::
format
::
nchw
?
platform
::
MKLDNNMemDesc
(
dims_
,
platform
::
MKLDNNGetDataType
<
float
>
(),
fmt
)
:
Axis2MemoryDesc
(
dims_
,
logical_axis_
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
src_md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
framework
::
Tensor
*
output
,
platform
::
Place
place
)
{
auto
local_key
=
key_
+
"@user_dst_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
auto
dst_mdp
=
mkldnn
::
memory
::
primitive_desc
{
Axis2MemoryDesc
(
dims_
,
axis_
),
engine_
};
auto
dst_data
=
output
->
mutable_data
<
float
>
(
place
,
paddle
::
memory
::
Allocator
::
kDefault
,
dst_mdp
.
get_size
());
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
dst_mdp
,
dst_data
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
auto
dst_data
=
output
->
mutable_data
<
float
>
(
place
);
mem_p
->
set_data_handle
(
dst_data
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
reorder
>
AcquireTranspose
(
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
)
{
auto
prim_key
=
key_
+
"@transpose_p"
;
auto
transpose_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
((
transpose_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
if
(
transpose_p
==
nullptr
)
{
transpose_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
(
src_memory_p
),
*
(
dst_memory_p
));
dev_ctx_
.
SetBlob
(
prim_key
,
transpose_p
);
}
else
{
is_reusing_
=
true
;
}
return
transpose_p
;
}
static
std
::
string
GetHash
(
std
::
vector
<
int
>&
shape
,
// NOLINT
std
::
vector
<
int
>&
axis
,
// NOLINT
const
std
::
string
&
suffix
)
{
return
dims2str
(
shape
)
+
dims2str
(
axis
)
+
suffix
;
}
protected:
mkldnn_memory_desc_t
Axis2MemoryDesc
(
std
::
vector
<
int
>&
nchw_tz
,
std
::
vector
<
int
>&
axis
)
{
mkldnn_memory_desc_t
mem_fmt
;
mem_fmt
.
primitive_kind
=
mkldnn_memory
;
mem_fmt
.
ndims
=
axis
.
size
();
for
(
unsigned
int
i
=
0
;
i
<
nchw_tz
.
size
();
++
i
)
{
mem_fmt
.
dims
[
i
]
=
nchw_tz
[
i
];
// logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt
.
data_type
=
mkldnn_f32
;
mem_fmt
.
format
=
mkldnn_blocked
;
unsigned
int
total_stride
=
1
;
for
(
int
i
=
nchw_tz
.
size
()
-
1
;
i
>=
0
;
--
i
)
{
mem_fmt
.
layout_desc
.
blocking
.
padding_dims
[
i
]
=
nchw_tz
[
i
];
// logical dimensions (nchw format, regardless physical
// layout)
mem_fmt
.
layout_desc
.
blocking
.
block_dims
[
i
]
=
1
;
mem_fmt
.
layout_desc
.
blocking
.
offset_padding_to_data
[
i
]
=
0
;
// no offset
mem_fmt
.
layout_desc
.
blocking
.
strides
[
0
][
axis
[
i
]]
=
total_stride
;
mem_fmt
.
layout_desc
.
blocking
.
strides
[
1
][
axis
[
i
]]
=
1
;
total_stride
*=
nchw_tz
[
axis
[
i
]];
}
mem_fmt
.
layout_desc
.
blocking
.
offset_padding
=
0
;
// no initial offset
return
mem_fmt
;
}
private:
std
::
vector
<
int
>
dims_
;
std
::
vector
<
int
>
axis_
;
std
::
vector
<
int
>
logical_axis_
;
};
template
<
class
forward_t
,
class
backward_data_t
,
class
backward_weights_t
>
class
ConvMKLDNNTemplateHandler
:
public
MKLDNNHandler
{
public:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录