Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
54474637
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
54474637
编写于
3月 30, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
3月 30, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16057 from heavengate/softmax_axis
Add attr 'axis' for softmax
上级
63ac947e
3e352388
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
413 addition
and
78 deletion
+413
-78
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+1
-1
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+2
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+23
-1
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+17
-4
paddle/fluid/operators/jit/more/mix/mix.h
paddle/fluid/operators/jit/more/mix/mix.h
+1
-1
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+37
-0
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+20
-4
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+2
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+2
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+37
-4
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+105
-19
paddle/fluid/operators/math/softmax.h
paddle/fluid/operators/math/softmax.h
+5
-4
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+20
-12
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+23
-4
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+47
-11
paddle/fluid/operators/softmax_with_cross_entropy_op.h
paddle/fluid/operators/softmax_with_cross_entropy_op.h
+3
-1
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
+3
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+14
-6
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-1
python/paddle/fluid/tests/unittests/test_softmax_op.py
python/paddle/fluid/tests/unittests/test_softmax_op.py
+48
-3
未找到文件。
paddle/fluid/API.spec
浏览文件 @
54474637
...
...
@@ -95,7 +95,7 @@ paddle.fluid.layers.conv2d (ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)), ('document', '37042620f9bd3a2da6e5d3138b2f724b'))
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test'], varargs=None, keywords=None, defaults=(False,)), ('document', 'a194fb80614023f543df3949fbd0d0b8'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '19ef6f9cdd27feac8a1ae060f19c10b4'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name'
], varargs=None, keywords=None, defaults=(False, None)), ('document', 'f19dd380864e61134ce3814e4be0de4b
'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name'
, 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '59b1c6bf2f0fa9dc649c85fef3a3b2ea
'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', 'bbd84e855e660cd1084bb71a2fd0cdaa'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', '043de7333b79ee0ac55053c14ed81625'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '859b887174d06f361658f69cb7c06d95'))
...
...
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
54474637
...
...
@@ -386,7 +386,7 @@ void BenchKernelSoftmax() {
RandomVec
<
T
>
(
bs
*
n
,
x
.
mutable_data
<
T
>
(
PlaceType
()),
-
2.
f
,
2.
f
);
const
T
*
x_data
=
x
.
data
<
T
>
();
T
*
y_data
=
y
.
mutable_data
<
T
>
(
PlaceType
());
BenchAllImpls
<
KernelTuple
,
PlaceType
>
(
n
,
x_data
,
y_data
,
n
,
bs
);
BenchAllImpls
<
KernelTuple
,
PlaceType
>
(
n
,
x_data
,
y_data
,
n
,
bs
,
1
);
}
}
}
...
...
paddle/fluid/operators/jit/helper.cc
浏览文件 @
54474637
...
...
@@ -34,6 +34,7 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kVAddRelu
);
ONE_CASE
(
kVSub
);
ONE_CASE
(
kVScal
);
ONE_CASE
(
kStrideScal
);
ONE_CASE
(
kVAddBias
);
ONE_CASE
(
kVRelu
);
ONE_CASE
(
kVBroadcast
);
...
...
@@ -55,6 +56,7 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kMatMul
);
ONE_CASE
(
kHMax
);
ONE_CASE
(
kHSum
);
ONE_CASE
(
kStrideASum
);
ONE_CASE
(
kSoftmax
);
ONE_CASE
(
kEmbSeqPool
);
ONE_CASE
(
kSgd
);
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
54474637
...
...
@@ -38,6 +38,8 @@ typedef enum {
kNCHW16CMulNC
,
kSeqPool
,
kSoftmax
,
kStrideASum
,
kStrideScal
,
kVAdd
,
kVAddBias
,
kVAddRelu
,
...
...
@@ -74,6 +76,14 @@ struct XYZNTuple {
template
<
typename
T
>
struct
AXYNTuple
:
public
XYZNTuple
<
T
>
{};
// a, x, y, n, stride
template
<
typename
T
>
struct
AXYNSTuple
{
typedef
T
data_type
;
typedef
int
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
const
T
*
,
T
*
,
int
,
int
);
};
// x, y, n
template
<
typename
T
>
struct
XYNTuple
{
...
...
@@ -86,6 +96,14 @@ struct XYNTuple {
template
<
typename
T
>
struct
XRNTuple
:
public
XYNTuple
<
T
>
{};
// x, returned value, n, stride
template
<
typename
T
>
struct
XRNSTuple
{
typedef
T
data_type
;
typedef
int
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
,
int
);
};
#define DECLARE_KERNELTUPLE(kernel_tuple, type) \
template <typename T> \
struct type##Tuple : public kernel_tuple<T> { \
...
...
@@ -101,6 +119,8 @@ DECLARE_KERNELTUPLE(XYZNTuple, VSub);
DECLARE_KERNELTUPLE
(
AXYNTuple
,
VScal
);
DECLARE_KERNELTUPLE
(
AXYNTuple
,
VAddBias
);
DECLARE_KERNELTUPLE
(
AXYNSTuple
,
StrideScal
);
DECLARE_KERNELTUPLE
(
XYNTuple
,
VRelu
);
DECLARE_KERNELTUPLE
(
XYNTuple
,
VIdentity
);
DECLARE_KERNELTUPLE
(
XYNTuple
,
VSquare
);
...
...
@@ -112,6 +132,8 @@ DECLARE_KERNELTUPLE(XYNTuple, VCopy);
DECLARE_KERNELTUPLE
(
XRNTuple
,
HMax
);
DECLARE_KERNELTUPLE
(
XRNTuple
,
HSum
);
DECLARE_KERNELTUPLE
(
XRNSTuple
,
StrideASum
);
typedef
struct
{
void
*
gates
;
// gates: x_ch, x_ih, x_fh, x_oh
const
void
*
ct_1
;
...
...
@@ -285,7 +307,7 @@ struct SoftmaxTuple {
static
constexpr
KernelType
kernel_type
=
kSoftmax
;
typedef
T
data_type
;
typedef
int
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
,
int
);
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
int
,
int
,
int
);
};
// nChw16c = nChw16c .* NC
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
54474637
...
...
@@ -50,10 +50,15 @@ void VTanh(const T* x, T* y, int n) {
compute_addbias
(
&
b
,
y
,
y
,
n
);
}
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
// remain is the product of dimension shapes after the axis dimension
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
)
{
auto
compute_hmax
=
KernelFuncs
<
HMaxTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hsum
=
KernelFuncs
<
HSumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vscal
=
KernelFuncs
<
VScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_strideasum
=
KernelFuncs
<
StrideASumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridescal
=
KernelFuncs
<
StrideScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vaddbias
=
KernelFuncs
<
VAddBiasTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vexp
=
KernelFuncs
<
VExpTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
...
...
@@ -64,9 +69,17 @@ void Softmax(const T* x, T* y, int n, int bs) {
scalar
=
static_cast
<
T
>
(
0
)
-
scalar
;
compute_vaddbias
(
&
scalar
,
x
,
y
,
n
);
// x - max
compute_vexp
(
y
,
y
,
n
);
compute_hsum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
compute_vscal
(
&
scalar
,
y
,
y
,
n
);
if
(
remain
==
1
)
{
compute_hsum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
compute_vscal
(
&
scalar
,
y
,
y
,
n
);
}
else
{
for
(
int
j
=
0
;
j
<
remain
;
++
j
)
{
compute_strideasum
(
&
y
[
j
],
&
scalar
,
n
,
remain
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
compute_stridescal
(
&
scalar
,
&
y
[
j
],
&
y
[
j
],
n
,
remain
);
}
}
x
+=
n
;
y
+=
n
;
}
...
...
paddle/fluid/operators/jit/more/mix/mix.h
浏览文件 @
54474637
...
...
@@ -26,7 +26,7 @@ using T = float;
void
VSigmoid
(
const
T
*
x
,
T
*
y
,
int
n
);
void
VTanh
(
const
T
*
x
,
T
*
y
,
int
n
);
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
);
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
);
void
LSTMCtHt
(
lstm_t
*
step
,
const
lstm_attr_t
*
attr
);
void
LSTMC1H1
(
lstm_t
*
step
,
const
lstm_attr_t
*
attr
);
...
...
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
浏览文件 @
54474637
...
...
@@ -7,6 +7,7 @@ USE_JITKERNEL_MORE(kMatMul, mkl)
USE_JITKERNEL_MORE
(
kVMul, mkl
)
USE_JITKERNEL_MORE
(
kVAdd, mkl
)
USE_JITKERNEL_MORE
(
kVScal, mkl
)
USE_JITKERNEL_MORE
(
kStrideScal, mkl
)
USE_JITKERNEL_MORE
(
kVExp, mkl
)
USE_JITKERNEL_MORE
(
kVSquare, mkl
)
USE_JITKERNEL_MORE
(
kVCopy, mkl
)
...
...
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
54474637
...
...
@@ -78,6 +78,26 @@ void VScal<double>(const double* a, const double* x, double* y, int n) {
}
}
template
<
>
void
StrideScal
<
float
>
(
const
float
*
a
,
const
float
*
x
,
float
*
y
,
int
n
,
int
stride
)
{
if
(
x
==
y
)
{
platform
::
dynload
::
cblas_sscal
(
n
/
stride
,
*
a
,
y
,
stride
);
}
else
{
refer
::
StrideScal
<
float
>
(
a
,
x
,
y
,
n
,
stride
);
}
}
template
<
>
void
StrideScal
<
double
>
(
const
double
*
a
,
const
double
*
x
,
double
*
y
,
int
n
,
int
stride
)
{
if
(
x
==
y
)
{
platform
::
dynload
::
cblas_dscal
(
n
/
stride
,
*
a
,
y
,
stride
);
}
else
{
refer
::
StrideScal
<
double
>
(
a
,
x
,
y
,
n
,
stride
);
}
}
template
<
>
void
VExp
<
float
>
(
const
float
*
x
,
float
*
y
,
int
n
)
{
platform
::
dynload
::
vsExp
(
n
,
x
,
y
);
...
...
@@ -128,6 +148,16 @@ void ASum<double>(const double* x, double* res, int n) {
res
[
0
]
=
platform
::
dynload
::
cblas_dasum
(
n
,
x
,
1
);
}
template
<
>
void
StrideASum
<
float
>
(
const
float
*
x
,
float
*
res
,
int
n
,
int
stride
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_sasum
(
n
/
stride
,
x
,
stride
);
}
template
<
>
void
StrideASum
<
double
>
(
const
double
*
x
,
double
*
res
,
int
n
,
int
stride
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_dasum
(
n
/
stride
,
x
,
stride
);
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template
<
>
bool
VMulKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
...
...
@@ -144,6 +174,11 @@ bool VScalKernel<float>::CanBeUsed(const int& d) const {
return
platform
::
MayIUse
(
platform
::
avx512f
)
&&
d
>
512
;
}
template
<
>
bool
StrideScalKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
true
;
}
template
<
>
bool
VExpKernel
<
float
>::
CanBeUsed
(
const
int
&
d
)
const
{
return
d
>
7
;
...
...
@@ -235,6 +270,7 @@ bool SoftmaxKernel<float>::CanBeUsed(const int& d) const {
AWALYS_USE_ME_WITH_DOUBLE
(
VMul
);
AWALYS_USE_ME_WITH_DOUBLE
(
VAdd
);
AWALYS_USE_ME_WITH_DOUBLE
(
VScal
);
AWALYS_USE_ME_WITH_DOUBLE
(
StrideScal
);
AWALYS_USE_ME_WITH_DOUBLE
(
VExp
);
AWALYS_USE_ME_WITH_DOUBLE
(
VSigmoid
);
AWALYS_USE_ME_WITH_DOUBLE
(
VTanh
);
...
...
@@ -259,6 +295,7 @@ REGISTER_MKL_KERNEL(MatMul);
REGISTER_MKL_KERNEL
(
VMul
);
REGISTER_MKL_KERNEL
(
VAdd
);
REGISTER_MKL_KERNEL
(
VScal
);
REGISTER_MKL_KERNEL
(
StrideScal
);
REGISTER_MKL_KERNEL
(
VExp
);
REGISTER_MKL_KERNEL
(
VSquare
);
REGISTER_MKL_KERNEL
(
VCopy
);
...
...
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
54474637
...
...
@@ -129,7 +129,14 @@ template <typename T>
void
ASum
(
const
T
*
x
,
T
*
res
,
int
n
);
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
void
StrideASum
(
const
T
*
x
,
T
*
res
,
int
n
,
int
stride
);
template
<
typename
T
>
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
);
// remain is the product of dimension shapes after the axis dimension
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
=
1
)
{
std
::
vector
<
T
>
entities
(
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
entities
[
i
]
=
x
[
i
*
n
];
...
...
@@ -143,9 +150,17 @@ void Softmax(const T* x, T* y, int n, int bs) {
VExp
(
y
,
y
,
n
*
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
sum
;
ASum
(
&
y
[
i
*
n
],
&
sum
,
n
);
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
VScal
(
&
sum
,
&
y
[
i
*
n
],
&
y
[
i
*
n
],
n
);
if
(
remain
==
1
)
{
ASum
(
&
y
[
i
*
n
],
&
sum
,
n
);
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
VScal
(
&
sum
,
&
y
[
i
*
n
],
&
y
[
i
*
n
],
n
);
}
else
{
for
(
int
j
=
0
;
j
<
remain
;
++
j
)
{
StrideASum
(
&
y
[
i
*
n
+
j
],
&
sum
,
n
,
remain
);
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
StrideScal
(
&
sum
,
&
y
[
i
*
n
+
j
],
&
y
[
i
*
n
+
j
],
n
,
remain
);
}
}
}
}
...
...
@@ -193,6 +208,7 @@ DECLARE_MKL_KERNEL(VAdd);
// AXYN
DECLARE_MKL_KERNEL
(
VScal
);
DECLARE_MKL_KERNEL
(
StrideScal
);
// XYN
DECLARE_MKL_KERNEL
(
VExp
);
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
54474637
...
...
@@ -12,6 +12,7 @@ USE_JITKERNEL_REFER(kVAdd)
USE_JITKERNEL_REFER
(
kVAddRelu
)
USE_JITKERNEL_REFER
(
kVSub
)
USE_JITKERNEL_REFER
(
kVScal
)
USE_JITKERNEL_REFER
(
kStrideScal
)
USE_JITKERNEL_REFER
(
kVAddBias
)
USE_JITKERNEL_REFER
(
kVCopy
)
USE_JITKERNEL_REFER
(
kVRelu
)
...
...
@@ -32,6 +33,7 @@ USE_JITKERNEL_REFER(kMatMul)
USE_JITKERNEL_REFER
(
kVSquare
)
USE_JITKERNEL_REFER
(
kHSum
)
USE_JITKERNEL_REFER
(
kHMax
)
USE_JITKERNEL_REFER
(
kStrideASum
)
USE_JITKERNEL_REFER
(
kSoftmax
)
USE_JITKERNEL_REFER
(
kEmbSeqPool
)
USE_JITKERNEL_REFER
(
kSgd
)
...
...
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
54474637
...
...
@@ -27,6 +27,7 @@ REGISTER_REFER_KERNEL(VAddRelu);
REGISTER_REFER_KERNEL
(
VSub
);
REGISTER_REFER_KERNEL
(
VScal
);
REGISTER_REFER_KERNEL
(
StrideScal
);
REGISTER_REFER_KERNEL
(
VAddBias
);
REGISTER_REFER_KERNEL
(
VRelu
);
...
...
@@ -51,6 +52,7 @@ REGISTER_REFER_KERNEL(SeqPool);
REGISTER_REFER_KERNEL
(
MatMul
);
REGISTER_REFER_KERNEL
(
HMax
);
REGISTER_REFER_KERNEL
(
HSum
);
REGISTER_REFER_KERNEL
(
StrideASum
);
REGISTER_REFER_KERNEL
(
Softmax
);
REGISTER_REFER_KERNEL
(
EmbSeqPool
);
REGISTER_REFER_KERNEL
(
Sgd
);
...
...
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
54474637
...
...
@@ -411,19 +411,47 @@ void HSum(const T* x, T* res, int n) {
}
}
template
<
typename
T
>
void
StrideASum
(
const
T
*
x
,
T
*
res
,
int
n
,
int
stride
)
{
res
[
0
]
=
x
[
0
];
for
(
int
i
=
stride
;
i
<
n
;
i
+=
stride
)
{
res
[
0
]
+=
std
::
abs
(
x
[
i
]);
}
}
template
<
typename
T
>
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
if
(
i
%
stride
==
0
)
{
y
[
i
]
=
x
[
i
]
*
a
[
0
];
}
else
{
y
[
i
]
=
x
[
i
];
}
}
}
// y = e^(x - max(x))
// y = y / sum(y)
// remain is the product of dimension shapes after the axis dimension
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
=
1
)
{
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
=
1
,
int
remain
=
1
)
{
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
HMax
(
x
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
0
)
-
scalar
;
VAddBias
(
&
scalar
,
x
,
y
,
n
);
// x - max
VExp
(
y
,
y
,
n
);
HSum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
VScal
(
&
scalar
,
y
,
y
,
n
);
if
(
remain
==
1
)
{
HSum
(
y
,
&
scalar
,
n
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
VScal
(
&
scalar
,
y
,
y
,
n
);
}
else
{
for
(
int
j
=
0
;
j
<
remain
;
j
++
)
{
StrideASum
(
&
y
[
j
],
&
scalar
,
n
,
remain
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
StrideScal
(
&
scalar
,
&
y
[
j
],
&
y
[
j
],
n
,
remain
);
}
}
x
+=
n
;
y
+=
n
;
}
...
...
@@ -507,6 +535,9 @@ DECLARE_REFER_KERNEL(VSub);
DECLARE_REFER_KERNEL
(
VScal
);
DECLARE_REFER_KERNEL
(
VAddBias
);
// const T* a, const T* x, T* y, int n, int stride
DECLARE_REFER_KERNEL
(
StrideScal
);
// const T* x, T* y, int n
DECLARE_REFER_KERNEL
(
VRelu
);
DECLARE_REFER_KERNEL
(
VIdentity
);
...
...
@@ -528,6 +559,8 @@ DECLARE_REFER_KERNEL(GRUHtPart2);
DECLARE_REFER_KERNEL
(
HMax
);
DECLARE_REFER_KERNEL
(
HSum
);
DECLARE_REFER_KERNEL
(
StrideASum
);
// others
DECLARE_REFER_KERNEL
(
CRFDecoding
);
DECLARE_REFER_KERNEL
(
LayerNorm
);
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
54474637
...
...
@@ -723,39 +723,122 @@ void TestKernelSoftmax() {
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
bs
:
{
1
,
2
,
10
})
{
for
(
int
n
:
TestSizes
())
{
for
(
int
m
:
{
1
,
2
,
3
})
{
// remain
if
(
m
>
n
||
n
%
m
!=
0
)
{
continue
;
}
auto
ref
=
jit
::
GetReferFunc
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
bs
*
n
),
y
(
bs
*
n
);
RandomVec
<
T
>
(
bs
*
n
,
x
.
data
());
const
T
*
x_data
=
x
.
data
();
T
*
y_data
=
y
.
data
();
std
::
vector
<
T
>
xinp
(
x
.
size
());
// inplace test
std
::
copy
(
x
.
begin
(),
x
.
end
(),
xinp
.
begin
());
ref
(
x_data
,
y_data
,
n
,
bs
,
m
);
T
*
xinp_data
=
xinp
.
data
();
ref
(
xinp_data
,
xinp_data
,
n
,
bs
,
m
);
ExpectEQ
<
T
>
(
xinp_data
,
y_data
,
n
*
bs
);
auto
verifier
=
[](
const
typename
KernelTuple
::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
yref
,
int
n
,
int
bs
,
int
m
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
yref
.
size
(),
x
.
size
());
EXPECT_EQ
(
x
.
size
(),
static_cast
<
size_t
>
(
n
*
bs
));
const
T
*
x_data
=
x
.
data
();
const
T
*
yref_data
=
yref
.
data
();
std
::
vector
<
T
>
ytgt
(
n
*
bs
);
T
*
ytgt_data
=
ytgt
.
data
();
// test normal
tgt
(
x_data
,
ytgt_data
,
n
,
bs
,
m
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
// test inplace x
std
::
copy
(
x
.
begin
(),
x
.
end
(),
ytgt
.
begin
());
tgt
(
ytgt_data
,
ytgt_data
,
n
,
bs
,
m
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
};
TestAllImpls
<
KernelTuple
,
PlaceType
>
(
n
,
verifier
,
x
,
y
,
n
,
bs
,
m
);
}
}
}
}
template
<
typename
KernelTuple
,
typename
PlaceType
>
void
TestKernelStrideASum
()
{
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
d
:
TestSizes
())
{
for
(
int
m
:
{
1
,
2
,
3
})
{
// stride
if
(
m
>
d
||
d
%
m
!=
0
)
{
continue
;
}
auto
ref
=
jit
::
GetReferFunc
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
());
T
ref_res
;
ref
(
x
.
data
(),
&
ref_res
,
d
,
m
);
auto
verifier
=
[](
const
typename
KernelTuple
::
func_type
tgt
,
const
std
::
vector
<
T
>&
x
,
const
T
ref_res
,
const
int
m
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
T
tgt_res
;
tgt
(
x
.
data
(),
&
tgt_res
,
x
.
size
(),
m
);
ExpectEQ
<
T
>
(
&
tgt_res
,
&
ref_res
,
1
);
};
TestAllImpls
<
KernelTuple
,
PlaceType
>
(
d
,
verifier
,
x
,
ref_res
,
m
);
}
}
}
template
<
typename
KernelTuple
,
typename
PlaceType
>
void
TestKernelStrideScal
()
{
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
for
(
int
d
:
TestSizes
())
{
for
(
int
m
:
{
1
,
2
,
3
})
{
// stride
if
(
m
>
d
||
d
%
m
!=
0
)
{
continue
;
}
auto
ref
=
jit
::
GetReferFunc
<
KernelTuple
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
bs
*
n
),
y
(
bs
*
n
);
RandomVec
<
T
>
(
bs
*
n
,
x
.
data
());
const
T
*
x_data
=
x
.
data
();
T
*
y_data
=
y
.
data
();
std
::
vector
<
T
>
xinp
(
x
.
size
());
// inplace test
const
T
a
=
static_cast
<
T
>
(
3
);
std
::
vector
<
T
>
x
(
d
),
yref
(
d
);
std
::
vector
<
T
>
xinp
(
d
);
// inplace test
RandomVec
<
T
>
(
d
,
x
.
data
());
std
::
copy
(
x
.
begin
(),
x
.
end
(),
xinp
.
begin
());
ref
(
x_data
,
y_data
,
n
,
bs
);
const
T
*
x_data
=
x
.
data
();
T
*
yref_data
=
yref
.
data
();
T
*
xinp_data
=
xinp
.
data
();
ref
(
xinp_data
,
xinp_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
xinp_data
,
y_data
,
n
*
bs
);
// test refer code inplace
ref
(
&
a
,
x_data
,
yref_data
,
d
,
m
);
ref
(
&
a
,
xinp_data
,
xinp_data
,
d
,
m
);
ExpectEQ
<
T
>
(
xinp_data
,
yref_data
,
d
);
auto
verifier
=
[](
const
typename
KernelTuple
::
func_type
tgt
,
auto
verifier
=
[](
const
typename
KernelTuple
::
func_type
tgt
,
const
T
a
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
yref
,
int
n
,
int
bs
)
{
const
int
m
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
yref
.
size
(),
x
.
size
());
EXPECT_EQ
(
x
.
size
(),
static_cast
<
size_t
>
(
n
*
bs
));
const
T
*
x_data
=
x
.
data
();
const
T
*
yref_data
=
yref
.
data
();
std
::
vector
<
T
>
ytgt
(
n
*
bs
);
const
int
d
=
yref
.
size
();
std
::
vector
<
T
>
ytgt
(
d
);
T
*
ytgt_data
=
ytgt
.
data
();
// test normal
tgt
(
x_data
,
ytgt_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
tgt
(
&
a
,
x_data
,
ytgt_data
,
d
,
m
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
d
);
// test inplace x
std
::
copy
(
x
.
begin
(),
x
.
end
(),
ytgt
.
begin
());
tgt
(
ytgt_data
,
ytgt_data
,
n
,
bs
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
n
*
bs
);
tgt
(
&
a
,
ytgt_data
,
ytgt_data
,
d
,
m
);
ExpectEQ
<
T
>
(
ytgt_data
,
yref_data
,
d
);
};
TestAllImpls
<
KernelTuple
,
PlaceType
>
(
n
,
verifier
,
x
,
y
,
n
,
bs
);
TestAllImpls
<
KernelTuple
,
PlaceType
>
(
d
,
verifier
,
a
,
x
,
yref
,
m
);
}
}
}
...
...
@@ -912,7 +995,7 @@ TEST(JITKernel_pool, more) {
EXPECT_EQ
(
kers
.
size
(),
10UL
);
#else
#ifdef PADDLE_WITH_MKLML
EXPECT_EQ
(
kers
.
size
(),
2
1
UL
);
EXPECT_EQ
(
kers
.
size
(),
2
2
UL
);
#else
EXPECT_EQ
(
kers
.
size
(),
8UL
);
#endif
...
...
@@ -921,7 +1004,7 @@ TEST(JITKernel_pool, more) {
TEST
(
JITKernel_pool
,
refer
)
{
const
auto
&
kers
=
jit
::
ReferKernelPool
::
Instance
().
AllKernels
();
EXPECT_EQ
(
kers
.
size
(),
29
UL
);
EXPECT_EQ
(
kers
.
size
(),
31
UL
);
}
// test helper
...
...
@@ -1292,3 +1375,6 @@ TEST_CPU_KERNEL(MatMul);
TEST_CPU_KERNEL
(
Softmax
);
TEST_CPU_KERNEL
(
Sgd
);
TEST_CPU_KERNEL
(
VBroadcast
);
TEST_CPU_KERNEL
(
StrideASum
);
TEST_CPU_KERNEL
(
StrideScal
);
paddle/fluid/operators/math/softmax.h
浏览文件 @
54474637
...
...
@@ -23,15 +23,16 @@ template <typename DeviceContext, typename T, bool is_test,
typename
Enable
=
void
>
class
SoftmaxFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
);
void
operator
()(
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxGradFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
);
void
operator
()(
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
);
};
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
54474637
...
...
@@ -36,8 +36,8 @@ struct ValueClip {
template
<
typename
DeviceContext
,
typename
T
,
bool
is_test
,
typename
Enable
>
void
SoftmaxFunctor
<
DeviceContext
,
T
,
is_test
,
Enable
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
...
...
@@ -46,10 +46,13 @@ void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
const
int
batch_size
=
logits
.
dimension
(
kBatchDim
);
const
int
num_classes
=
logits
.
dimension
(
kClassDim
);
const
int
num_remain
=
num_classes
/
axis_dim
;
Eigen
::
DSizes
<
int
,
1
>
along_class
(
kClassDim
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
num_classes
);
Eigen
::
DSizes
<
int
,
3
>
batch_axis_remain
(
batch_size
,
axis_dim
,
num_remain
);
Eigen
::
DSizes
<
int
,
2
>
one_axis
(
1
,
axis_dim
);
auto
shifted_logits
=
(
logits
-
logits
.
maximum
(
along_class
)
...
...
@@ -60,11 +63,11 @@ void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
softmax
.
device
(
*
context
.
eigen_device
())
=
shifted_logits
.
exp
();
softmax
.
device
(
*
context
.
eigen_device
())
=
(
softmax
*
softmax
.
sum
(
along_class
)
softmax
.
reshape
(
batch_axis_remain
)
.
sum
(
along_class
)
.
inverse
()
.
eval
()
.
reshape
(
batch_by_one
)
.
broadcast
(
one_by_class
));
.
broadcast
(
one_axis
));
}
template
<
class
DeviceContext
>
...
...
@@ -73,8 +76,8 @@ using enable_if_CPU = typename std::enable_if<
template
<
typename
DeviceContext
>
class
SoftmaxFunctor
<
DeviceContext
,
float
,
true
,
enable_if_CPU
<
DeviceContext
>>
{
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
void
operator
()(
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
auto
in_dims
=
X
->
dims
();
const
float
*
in_data
=
X
->
data
<
float
>
();
float
*
out_data
=
Y
->
data
<
float
>
();
...
...
@@ -84,14 +87,16 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
auto
compute_softmax
=
jit
::
KernelFuncs
<
jit
::
SoftmaxTuple
<
float
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
in_dims
[
kClassDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
],
in_dims
[
kClassDim
]
/
axis_dim
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
void
SoftmaxGradFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
)
{
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
)
{
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
softmax_grad
=
EigenMatrix
<
T
>::
From
(
*
y_grad
);
auto
logits_grad
=
EigenMatrix
<
T
>::
From
(
*
x_grad
);
...
...
@@ -101,16 +106,19 @@ void SoftmaxGradFunctor<DeviceContext, T>::operator()(
const
int
batch_size
=
softmax
.
dimension
(
kBatchDim
);
const
int
num_classes
=
softmax
.
dimension
(
kClassDim
);
const
int
num_remain
=
num_classes
/
axis_dim
;
Eigen
::
DSizes
<
int
,
1
>
along_class
(
kClassDim
);
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
batch_size
,
1
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
num_classes
);
Eigen
::
DSizes
<
int
,
3
>
batch_axis_remain
(
batch_size
,
axis_dim
,
num_remain
);
Eigen
::
DSizes
<
int
,
2
>
one_axis
(
1
,
axis_dim
);
auto
dot
=
(
softmax
*
softmax_grad
)
.
reshape
(
batch_axis_remain
)
.
sum
(
along_class
)
.
eval
()
.
reshape
(
batch_by_one
)
.
broadcast
(
one_by_class
);
.
broadcast
(
one_axis
);
logits_grad
.
device
(
*
context
.
eigen_device
())
=
(
softmax_grad
-
dot
)
*
softmax
;
}
...
...
paddle/fluid/operators/softmax_op.cc
浏览文件 @
54474637
...
...
@@ -39,6 +39,20 @@ class SoftmaxOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SoftmaxOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
rank_x
=
dim_x
.
size
();
auto
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
PADDLE_ENFORCE
(
axis
>=
-
rank_x
&&
axis
<
rank_x
,
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
);
auto
use_cudnn
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_cudnn"
);
auto
use_mkldnn
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_mkldnn"
);
if
(
axis
!=
rank_x
-
1
&&
axis
!=
-
1
)
{
PADDLE_ENFORCE
(
!
use_cudnn
,
"CUDNN kernel only support axis as -1."
);
PADDLE_ENFORCE
(
!
use_mkldnn
,
"MKLDNN kernel only support axis as -1."
);
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
...
...
@@ -80,8 +94,12 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of softmax, "
"whose
last dimension
is the input_feature_dimensions."
);
"whose
dimension :attr:`axis`
is the input_feature_dimensions."
);
AddOutput
(
"Out"
,
"The normalized values with the same shape as X."
);
AddAttr
<
int
>
(
"axis"
,
"The dimension index of Input(x) to perform softmax,"
"default -1 for last dimension"
)
.
SetDefault
(
-
1
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
...
...
@@ -106,12 +124,13 @@ Softmax Operator.
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
The input tensor will first be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the last dimension of the input
The dimension :attr:`axis` of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's
last dimension
) vector of arbitrary real values to a
of the input tensor's
dimension :attr:`axis`
) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
54474637
...
...
@@ -20,6 +20,30 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
static
inline
int
CanonicalAxis
(
const
int
axis
,
const
int
rank
)
{
if
(
axis
<
0
)
{
return
axis
+
rank
;
}
return
axis
;
}
static
inline
int
SizeToAxis
(
const
int
axis
,
DDim
dims
)
{
int
size
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
{
size
*=
dims
[
i
];
}
return
size
;
}
static
inline
int
SizeFromAxis
(
const
int
axis
,
DDim
dims
)
{
int
size
=
1
;
for
(
int
i
=
axis
;
i
<
dims
.
size
();
i
++
)
{
size
*=
dims
[
i
];
}
return
size
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -27,20 +51,27 @@ class SoftmaxKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
int
rank
=
X
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
int
axis_dim
=
X
->
dims
()[
axis
];
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
X
->
dims
().
size
();
Tensor
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
const
int
n
=
SizeToAxis
(
axis
,
X
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
X
->
dims
());
Tensor
X_2d
,
Out_2d
;
X_2d
.
ShareDataWith
(
*
X
).
Resize
({
n
,
d
});
Out_2d
.
ShareDataWith
(
*
Out
).
Resize
({
n
,
d
});
#ifdef PADDLE_ON_INFERENCE
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
true
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
#else
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
#endif
}
};
...
...
@@ -52,18 +83,23 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
rank
=
dX
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
int
axis_dim
=
dX
->
dims
()[
axis
];
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
Out
->
dims
().
size
();
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
Tensor
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
Tensor
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
const
int
n
=
SizeToAxis
(
axis
,
dX
->
dims
());
const
int
d
=
SizeFromAxis
(
axis
,
dX
->
dims
());
Tensor
dX_2d
,
Out_2d
,
dOut_2d
;
dX_2d
.
ShareDataWith
(
*
dX
).
Resize
({
n
,
d
});
Out_2d
.
ShareDataWith
(
*
Out
).
Resize
({
n
,
d
});
dOut_2d
.
ShareDataWith
(
*
dOut
).
Resize
({
n
,
d
});
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
d
Out_2d
,
&
dX_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
Out_2d
,
&
d
Out_2d
,
&
d
X_2d
);
}
};
...
...
paddle/fluid/operators/softmax_with_cross_entropy_op.h
浏览文件 @
54474637
...
...
@@ -40,10 +40,12 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
axis_dim
=
logits
->
dims
()[
logits
->
dims
().
size
()
-
1
];
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CPUDeviceContext
>();
math
::
SoftmaxFunctor
<
platform
::
CPUDeviceContext
,
T
,
false
>
()(
dev_ctx
,
logits
,
softmax
);
dev_ctx
,
axis_dim
,
logits
,
softmax
);
math
::
CrossEntropyFunctor
<
platform
::
CPUDeviceContext
,
T
>
()(
dev_ctx
,
loss
,
softmax
,
labels
,
context
.
Attr
<
bool
>
(
"soft_label"
),
context
.
Attr
<
int
>
(
"ignore_index"
));
...
...
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
浏览文件 @
54474637
...
...
@@ -67,9 +67,11 @@ class CudnnCTCKernel : public framework::OpKernel<T> {
softmax_logits
.
mutable_data
<
T
>
(
logits
->
dims
(),
ctx
.
GetPlace
());
softmax_logits
.
set_lod
(
logits_lod
);
int
rank
=
logits
->
dims
().
size
();
int
axis_dim
=
logits
->
dims
()[
rank
-
1
];
Tensor
in_2d
=
framework
::
ReshapeToMatrix
(
*
logits
,
rank
-
1
);
Tensor
out_2d
=
framework
::
ReshapeToMatrix
(
softmax_logits
,
rank
-
1
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
dev_ctx
,
&
in_2d
,
&
out_2d
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
dev_ctx
,
axis_dim
,
&
in_2d
,
&
out_2d
);
// ctc needs sequences data stored in transposed padding format
// logits and grad using padding data of layout 'TNC'
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
54474637
...
...
@@ -1820,17 +1820,18 @@ def sequence_softmax(input, use_cudnn=False, name=None):
return
softmax_out
def
softmax
(
input
,
use_cudnn
=
False
,
name
=
None
):
def
softmax
(
input
,
use_cudnn
=
False
,
name
=
None
,
axis
=-
1
):
"""
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
The input tensor will first be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the last dimension of the input
The dimension :attr:`axis` of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is the same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's
last dimension
) vector of arbitrary real values to a
of the input tensor's
dimension :attr:`axis`
) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
...
...
@@ -1852,6 +1853,9 @@ def softmax(input, use_cudnn=False, name=None):
False by default. Default: False
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
axis (int): The index of dimension to perform softmax calculations, it should
be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
input variable. Default: -1.
Returns:
Variable: output of softmax
...
...
@@ -1861,7 +1865,10 @@ def softmax(input, use_cudnn=False, name=None):
.. code-block:: python
fc = fluid.layers.fc(input=x, size=10)
softmax = fluid.layers.softmax(input=fc)
# perform softmax in the second dimension
softmax = fluid.layers.softmax(input=fc, axis=1)
# perform softmax in the last dimension
softmax = fluid.layers.softmax(input=fc, axis=-1)
"""
helper
=
LayerHelper
(
'softmax'
,
**
locals
())
...
...
@@ -1871,7 +1878,8 @@ def softmax(input, use_cudnn=False, name=None):
type
=
"softmax"
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
softmax_out
},
attrs
=
{
"use_cudnn"
:
use_cudnn
})
attrs
=
{
"axis"
:
axis
,
"use_cudnn"
:
use_cudnn
})
return
softmax_out
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
54474637
...
...
@@ -845,7 +845,7 @@ class TestBook(unittest.TestCase):
with
program_guard
(
program
):
data
=
layers
.
data
(
name
=
'data'
,
shape
=
[
10
],
dtype
=
'float32'
)
hid
=
layers
.
fc
(
input
=
data
,
size
=
20
)
self
.
assertIsNotNone
(
layers
.
softmax
(
hid
))
self
.
assertIsNotNone
(
layers
.
softmax
(
hid
,
axis
=
1
))
print
(
str
(
program
))
def
test_space_to_depth
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_softmax_op.py
浏览文件 @
54474637
...
...
@@ -31,6 +31,9 @@ class TestSoftmaxOp(OpTest):
def
get_x_shape
(
self
):
return
[
10
,
10
]
def
get_axis
(
self
):
return
-
1
def
setUp
(
self
):
self
.
op_type
=
"softmax"
self
.
use_cudnn
=
False
...
...
@@ -38,15 +41,15 @@ class TestSoftmaxOp(OpTest):
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
shape
=
self
.
get_x_shape
()
self
.
axis
=
self
.
get_axis
()
x
=
np
.
random
.
uniform
(
0.1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
x
.
reshape
([
-
1
,
self
.
shape
[
-
1
]]))
out
=
out
.
reshape
(
self
.
shape
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
}
...
...
@@ -76,6 +79,38 @@ class TestSoftmaxOp2(TestSoftmaxOp):
return
[
2
,
3
,
4
,
5
]
class
TestSoftmaxOp3
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
0
class
TestSoftmaxOp4
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
1
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
2
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
3
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp
(
TestSoftmaxOp
):
...
...
@@ -90,6 +125,16 @@ class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
return
[
2
,
3
,
4
,
5
]
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxCUDNNOp5
(
TestSoftmaxCUDNNOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
3
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxFP16Op
(
TestSoftmaxOp
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录