Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
53d558cd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
接近 2 年 前同步成功
通知
707
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53d558cd
编写于
1月 28, 2019
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
差异文件
test=develop, polish code and merge develop
上级
8e3da976
10bc9ffc
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
305 addition
and
195 deletion
+305
-195
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+0
-4
paddle/fluid/framework/details/execution_strategy.h
paddle/fluid/framework/details/execution_strategy.h
+1
-1
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+5
-4
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+3
-1
paddle/fluid/inference/analysis/passes/memory_optimize_pass.cc
...e/fluid/inference/analysis/passes/memory_optimize_pass.cc
+117
-71
paddle/fluid/inference/analysis/passes/memory_optimize_pass.h
...le/fluid/inference/analysis/passes/memory_optimize_pass.h
+4
-2
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+20
-4
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+13
-11
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+1
-1
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+5
-13
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
+21
-3
paddle/fluid/operators/distributed/request_handler_impl.cc
paddle/fluid/operators/distributed/request_handler_impl.cc
+5
-0
paddle/fluid/operators/distributed/rpc_server.cc
paddle/fluid/operators/distributed/rpc_server.cc
+22
-15
paddle/fluid/operators/distributed_ops/listen_and_serv_op.cc
paddle/fluid/operators/distributed_ops/listen_and_serv_op.cc
+7
-1
paddle/fluid/operators/grid_sampler_op.cc
paddle/fluid/operators/grid_sampler_op.cc
+8
-6
paddle/fluid/operators/ngraph/CMakeLists.txt
paddle/fluid/operators/ngraph/CMakeLists.txt
+1
-0
paddle/fluid/operators/ngraph/ngraph_bridge.cc
paddle/fluid/operators/ngraph/ngraph_bridge.cc
+18
-18
paddle/fluid/operators/ngraph/ngraph_bridge.h
paddle/fluid/operators/ngraph/ngraph_bridge.h
+6
-6
paddle/fluid/operators/ngraph/ngraph_engine.cc
paddle/fluid/operators/ngraph/ngraph_engine.cc
+6
-7
python/paddle/fluid/contrib/int8_inference/utility.py
python/paddle/fluid/contrib/int8_inference/utility.py
+29
-5
python/paddle/fluid/contrib/tests/test_calibration.py
python/paddle/fluid/contrib/tests/test_calibration.py
+13
-22
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
53d558cd
...
@@ -129,10 +129,6 @@ cc_test(version_test SRCS version_test.cc DEPS version)
...
@@ -129,10 +129,6 @@ cc_test(version_test SRCS version_test.cc DEPS version)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version
)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version
)
if
(
WITH_NGRAPH
)
cc_library
(
ngraph_bridge SRCS ngraph_bridge.cc DEPS operator framework_proto ngraph
)
endif
(
WITH_NGRAPH
)
cc_library
(
op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc
)
cc_library
(
op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc
)
nv_test
(
op_registry_test SRCS op_registry_test.cc DEPS op_registry
)
nv_test
(
op_registry_test SRCS op_registry_test.cc DEPS op_registry
)
...
...
paddle/fluid/framework/details/execution_strategy.h
浏览文件 @
53d558cd
...
@@ -28,7 +28,7 @@ struct ExecutionStrategy {
...
@@ -28,7 +28,7 @@ struct ExecutionStrategy {
// If we set this to 1, we will delete all variables when finish a batch. and
// If we set this to 1, we will delete all variables when finish a batch. and
// this will loss 15%+ performance.
// this will loss 15%+ performance.
// Please be aware about this parameters.
// Please be aware about this parameters.
size_t
num_iteration_per_drop_scope_
{
1
00
};
size_t
num_iteration_per_drop_scope_
{
1
};
ExecutorType
type_
{
kDefault
};
ExecutorType
type_
{
kDefault
};
bool
dry_run_
{
false
};
bool
dry_run_
{
false
};
};
};
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
53d558cd
...
@@ -1072,8 +1072,9 @@ Scope* OperatorWithKernel::PrepareData(
...
@@ -1072,8 +1072,9 @@ Scope* OperatorWithKernel::PrepareData(
proto
::
VarType
::
Type
OperatorWithKernel
::
IndicateDataType
(
proto
::
VarType
::
Type
OperatorWithKernel
::
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
{
const
ExecutionContext
&
ctx
)
const
{
proto
::
VarType
::
Type
defaut_data_type
=
static_cast
<
proto
::
VarType
::
Type
>
(
-
1
);
proto
::
VarType
::
Type
dafault_data_type
=
proto
::
VarType
::
Type
data_type
=
defaut_data_type
;
static_cast
<
proto
::
VarType
::
Type
>
(
-
1
);
proto
::
VarType
::
Type
data_type
=
dafault_data_type
;
for
(
auto
&
input
:
this
->
inputs_
)
{
for
(
auto
&
input
:
this
->
inputs_
)
{
const
std
::
vector
<
const
Variable
*>
vars
=
ctx
.
MultiInputVar
(
input
.
first
);
const
std
::
vector
<
const
Variable
*>
vars
=
ctx
.
MultiInputVar
(
input
.
first
);
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
...
@@ -1092,7 +1093,7 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
...
@@ -1092,7 +1093,7 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
input
.
first
,
i
);
input
.
first
,
i
);
proto
::
VarType
::
Type
tmp
=
t
->
type
();
proto
::
VarType
::
Type
tmp
=
t
->
type
();
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
d
efau
t_data_type
,
tmp
==
data_type
||
data_type
==
d
afaul
t_data_type
,
"DataType of Paddle Op %s must be the same. Get (%d) != (%d)"
,
"DataType of Paddle Op %s must be the same. Get (%d) != (%d)"
,
Type
(),
DataTypeToString
(
data_type
),
DataTypeToString
(
tmp
));
Type
(),
DataTypeToString
(
data_type
),
DataTypeToString
(
tmp
));
data_type
=
tmp
;
data_type
=
tmp
;
...
@@ -1100,7 +1101,7 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
...
@@ -1100,7 +1101,7 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
}
}
}
}
}
}
PADDLE_ENFORCE
(
data_type
!=
d
efau
t_data_type
,
PADDLE_ENFORCE
(
data_type
!=
d
afaul
t_data_type
,
"DataType should be indicated by input"
);
"DataType should be indicated by input"
);
return
data_type
;
return
data_type
;
}
}
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
53d558cd
...
@@ -133,7 +133,9 @@ struct Argument {
...
@@ -133,7 +133,9 @@ struct Argument {
// Memory optimized related.
// Memory optimized related.
DECL_ARGUMENT_FIELD
(
enable_memory_optim
,
EnableMemoryOptim
,
bool
);
DECL_ARGUMENT_FIELD
(
enable_memory_optim
,
EnableMemoryOptim
,
bool
);
DECL_ARGUMENT_FIELD
(
memory_optim_force_update
,
MemoryOptimForceUpdate
,
bool
);
DECL_ARGUMENT_FIELD
(
static_memory_optim
,
StaticMemoryOptim
,
bool
);
DECL_ARGUMENT_FIELD
(
static_memory_optim_force_update
,
StaticMemoryOptimForceUpdate
,
bool
);
// Indicate which kind of sort algorithm is used for operators, the memory
// Indicate which kind of sort algorithm is used for operators, the memory
// optimization relays on the sort algorithm.
// optimization relays on the sort algorithm.
DECL_ARGUMENT_FIELD
(
memory_optim_sort_kind
,
MemoryOptimSortKind
,
int
);
DECL_ARGUMENT_FIELD
(
memory_optim_sort_kind
,
MemoryOptimSortKind
,
int
);
...
...
paddle/fluid/inference/analysis/passes/memory_optimize_pass.cc
浏览文件 @
53d558cd
...
@@ -444,6 +444,26 @@ std::vector<std::map<std::string, std::vector<int>>> DeseralizeBatchVarShapes(
...
@@ -444,6 +444,26 @@ std::vector<std::map<std::string, std::vector<int>>> DeseralizeBatchVarShapes(
return
batch_shapes
;
return
batch_shapes
;
}
}
// Replace the -1 in shape to a real number to fake the shape.
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>
FakeBatchVarShapes
(
const
framework
::
ProgramDesc
&
program
)
{
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>
res
;
res
.
emplace_back
();
auto
&
record
=
res
.
front
();
const
int
fake_batch_size
=
3
;
for
(
auto
*
var
:
program
.
Block
(
0
).
AllVars
())
{
if
(
var
->
GetType
()
==
framework
::
proto
::
VarType
::
Type
::
VarType_Type_LOD_TENSOR
)
{
auto
shape
=
var
->
GetShape
();
for
(
auto
&
v
:
shape
)
{
if
(
v
<
0
)
v
=
fake_batch_size
;
}
record
[
var
->
Name
()].
assign
(
shape
.
begin
(),
shape
.
end
());
}
}
return
res
;
}
// Calculate the average dim of each tensor from the batch shape cache.
// Calculate the average dim of each tensor from the batch shape cache.
std
::
unordered_map
<
std
::
string
,
size_t
>
GetBatchAverageSize
(
std
::
unordered_map
<
std
::
string
,
size_t
>
GetBatchAverageSize
(
const
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>&
batches
)
{
const
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>&
batches
)
{
...
@@ -478,6 +498,7 @@ std::vector<std::unordered_set<std::string>> AnalysisBatchShapesByBatchSize(
...
@@ -478,6 +498,7 @@ std::vector<std::unordered_set<std::string>> AnalysisBatchShapesByBatchSize(
std
::
unordered_map
<
std
::
string
,
std
::
stringstream
>
var_batchsize_hashes
;
std
::
unordered_map
<
std
::
string
,
std
::
stringstream
>
var_batchsize_hashes
;
for
(
auto
&
batch
:
batches
)
{
for
(
auto
&
batch
:
batches
)
{
for
(
auto
&
ele
:
batch
)
{
for
(
auto
&
ele
:
batch
)
{
PADDLE_ENFORCE
(
!
ele
.
second
.
empty
());
int
batch_size
=
ele
.
second
.
front
();
int
batch_size
=
ele
.
second
.
front
();
// TODO(Superjomn) might consume large memory here, use combine hash.
// TODO(Superjomn) might consume large memory here, use combine hash.
var_batchsize_hashes
[
ele
.
first
]
<<
batch_size
;
var_batchsize_hashes
[
ele
.
first
]
<<
batch_size
;
...
@@ -538,9 +559,21 @@ std::vector<std::unordered_set<std::string>> AnalysisBatchShapesBySimilarSize(
...
@@ -538,9 +559,21 @@ std::vector<std::unordered_set<std::string>> AnalysisBatchShapesBySimilarSize(
std
::
string
MemoryOptimizePass
::
repr
()
const
{
return
"memory optimize pass"
;
}
std
::
string
MemoryOptimizePass
::
repr
()
const
{
return
"memory optimize pass"
;
}
std
::
pair
<
size_t
,
size_t
>
GetRange
(
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
ave_size
)
{
auto
res
=
std
::
make_pair
(
std
::
numeric_limits
<
size_t
>::
max
(),
std
::
numeric_limits
<
size_t
>::
min
());
for
(
auto
&
item
:
ave_size
)
{
res
.
first
=
std
::
min
(
item
.
second
,
res
.
first
);
res
.
second
=
std
::
max
(
item
.
second
,
res
.
second
);
}
return
res
;
}
void
MemoryOptimizePass
::
RunImpl
(
Argument
*
argument
)
{
void
MemoryOptimizePass
::
RunImpl
(
Argument
*
argument
)
{
// When force update, should not optimize memory.
// When force update, should not optimize memory.
if
(
!
argument
->
enable_memory_optim
()
||
argument
->
memory_optim_force_update
())
if
(
!
argument
->
enable_memory_optim
()
||
argument
->
static_memory_optim_force_update
())
return
;
return
;
graph_
=
argument
->
main_graph_ptr
();
graph_
=
argument
->
main_graph_ptr
();
...
@@ -549,21 +582,38 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
...
@@ -549,21 +582,38 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
argument
->
model_program_path_valid
()
?
argument
->
model_program_path
()
argument
->
model_program_path_valid
()
?
argument
->
model_program_path
()
:
""
);
:
""
);
VLOG
(
3
)
<<
"Load memory cache from "
<<
path
;
VLOG
(
3
)
<<
"Load memory cache from "
<<
path
;
if
(
inference
::
IsFileExists
(
path
))
{
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>
batches
;
VLOG
(
4
)
<<
"Performing memory optimize"
;
auto
batches
=
DeseralizeBatchVarShapes
(
path
);
if
(
argument
->
static_memory_optim
()
&&
inference
::
IsFileExists
(
path
))
{
auto
var_batch_ave_size
=
GetBatchAverageSize
(
batches
);
string
::
PrettyLogInfo
(
"--- Performing static memory optimize"
);
batches
=
DeseralizeBatchVarShapes
(
path
);
}
else
{
string
::
PrettyLogInfo
(
"--- Performing dynamic memory optimize"
);
batches
=
FakeBatchVarShapes
(
argument
->
main_program
());
}
auto
var_batch_ave_size
=
GetBatchAverageSize
(
batches
);
// Get min and max memory size.
const
auto
range
=
GetRange
(
var_batch_ave_size
);
const
int
cluster_size
=
std
::
max
(
static_cast
<
int
>
((
range
.
second
-
range
.
first
)
/
100
/*cluster num*/
),
1024
);
const
int
cluster_size1
=
std
::
max
(
static_cast
<
int
>
((
range
.
second
-
range
.
first
)
/
1000
/*cluster num*/
),
1024
);
std
::
unordered_map
<
std
::
string
,
Node
*>
tensor_nodes
;
std
::
unordered_map
<
std
::
string
,
Node
*>
tensor_nodes
;
space_table_t
space_table
;
space_table_t
space_table
;
CollectVarMemorySize
(
var_batch_ave_size
,
&
tensor_nodes
,
&
space_table
);
CollectVarMemorySize
(
var_batch_ave_size
,
&
tensor_nodes
,
&
space_table
);
std
::
unordered_map
<
std
::
string
,
std
::
string
>
reuse_table
;
std
::
unordered_map
<
std
::
string
,
std
::
string
>
reuse_table
;
double
max_saving_ratio
=
0.
;
double
max_saving_ratio
=
0.
;
std
::
vector
<
std
::
function
<
MemoryAllocation
()
>>
strategies
;
std
::
vector
<
std
::
function
<
MemoryAllocation
()
>>
strategies
;
for
(
int
sort_kind
=
0
;
sort_kind
<
2
;
sort_kind
++
)
{
for
(
int
sort_kind
=
0
;
sort_kind
<
2
;
sort_kind
++
)
{
if
(
argument
->
static_memory_optim
())
{
// This strategy only make scene in static memory optimize.
strategies
.
emplace_back
([
&
,
sort_kind
]
{
strategies
.
emplace_back
([
&
,
sort_kind
]
{
auto
clustered_vars_by_batch_size
=
auto
clustered_vars_by_batch_size
=
AnalysisBatchShapesByBatchSize
(
batches
);
AnalysisBatchShapesByBatchSize
(
batches
);
...
@@ -572,71 +622,67 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
...
@@ -572,71 +622,67 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
return
allocation
;
return
allocation
;
});
});
}
strategies
.
emplace_back
([
&
,
sort_kind
]
{
strategies
.
emplace_back
([
&
,
sort_kind
]
{
auto
clustered_vars_by_ave_size
=
AnalysisBatchShapesBySimilarSize
(
auto
clustered_vars_by_ave_size
=
space_table
,
batches
,
1024
);
// interval 1kb
AnalysisBatchShapesBySimilarSize
(
space_table
,
batches
,
cluster_size
);
MemoryAllocation
allocation
;
MemoryAllocation
allocation
;
MakeReusePlan
(
clustered_vars_by_ave_size
,
var_batch_ave_size
,
MakeReusePlan
(
clustered_vars_by_ave_size
,
var_batch_ave_size
,
space_table
,
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
&
reuse_table
,
sort_kind
,
&
allocation
);
return
allocation
;
return
allocation
;
});
});
strategies
.
emplace_back
([
&
,
sort_kind
]
{
auto
clustered_vars_by_ave_size
=
AnalysisBatchShapesBySimilarSize
(
space_table
,
batches
,
cluster_size1
);
MemoryAllocation
allocation
;
MakeReusePlan
(
clustered_vars_by_ave_size
,
var_batch_ave_size
,
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
return
allocation
;
});
strategies
.
emplace_back
([
&
,
sort_kind
]
{
auto
clustered_vars_by_ave_size
=
AnalysisBatchShapesBySimilarSize
(
space_table
,
batches
,
std
::
numeric_limits
<
int
>::
max
());
// no intervals
MemoryAllocation
allocation
;
MakeReusePlan
(
clustered_vars_by_ave_size
,
var_batch_ave_size
,
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
return
allocation
;
});
}
strategies
.
emplace_back
([
&
,
sort_kind
]
{
std
::
function
<
MemoryAllocation
()
>*
best_strategy
{
nullptr
};
auto
clustered_vars_by_ave_size
=
AnalysisBatchShapesBySimilarSize
(
space_table
,
batches
,
1024
*
1024
);
// interval 1MB
MemoryAllocation
allocation
;
MakeReusePlan
(
clustered_vars_by_ave_size
,
var_batch_ave_size
,
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
return
allocation
;
});
strategies
.
emplace_back
([
&
,
sort_kind
]
{
// Try all strategies to get the best result.
auto
clustered_vars_by_ave_size
=
AnalysisBatchShapesBySimilarSize
(
for
(
auto
&
strategy
:
strategies
)
{
space_table
,
batches
,
auto
allocation
=
strategy
();
std
::
numeric_limits
<
int
>::
max
());
// no intervals
string
::
PrettyLogDetail
(
"--- get strategy saving %f memory for workspace"
,
MemoryAllocation
allocation
;
allocation
.
GetSavingRatio
());
MakeReusePlan
(
clustered_vars_by_ave_size
,
var_batch_ave_size
,
if
(
allocation
.
GetSavingRatio
()
>
max_saving_ratio
)
{
space_table
,
&
reuse_table
,
sort_kind
,
&
allocation
);
max_saving_ratio
=
allocation
.
GetSavingRatio
();
return
allocation
;
best_strategy
=
&
strategy
;
});
}
}
}
if
(
!
best_strategy
)
{
LOG
(
ERROR
)
<<
"This model makes poor memory optimize, skip memory optimize"
;
return
;
}
auto
memory_allocation
=
(
*
best_strategy
)();
std
::
function
<
MemoryAllocation
()
>*
best_strategy
{
nullptr
};
string
::
PrettyLogInfo
(
"--- Saved %.2f%s memory for workspace(temporary variables)"
,
memory_allocation
.
GetSavingRatio
()
*
100
,
"%"
);
// Try all strategies to get the best result.
argument
->
main_graph
().
Set
(
framework
::
ir
::
kGraphToProgramVarsToRemove
,
for
(
auto
&
strategy
:
strategies
)
{
new
std
::
unordered_set
<
std
::
string
>
);
auto
allocation
=
strategy
();
auto
&
vars2remove
=
string
::
PrettyLogDetail
(
"--- get strategy saving %f memory for workspace"
,
argument
->
main_graph
().
Get
<
std
::
unordered_set
<
std
::
string
>>
(
allocation
.
GetSavingRatio
());
framework
::
ir
::
kGraphToProgramVarsToRemove
);
if
(
allocation
.
GetSavingRatio
()
>
max_saving_ratio
)
{
max_saving_ratio
=
allocation
.
GetSavingRatio
();
PerformReusePlan
(
reuse_table
,
memory_allocation
.
sort_kind
,
&
vars2remove
);
best_strategy
=
&
strategy
;
argument
->
SetMemoryOptimSortKind
(
memory_allocation
.
sort_kind
);
}
}
if
(
!
best_strategy
)
{
LOG
(
ERROR
)
<<
"This model makes poor memory optimize, skip memory optimize"
;
return
;
}
auto
memory_allocation
=
(
*
best_strategy
)();
string
::
PrettyLogH2
(
"--- Saved %.2f%s memory for workspace(temporary variables)"
,
memory_allocation
.
GetSavingRatio
()
*
100
,
"%"
);
string
::
PrettyLogDetail
(
"--- Allocated %d MB"
,
memory_allocation
.
allocated
/
1024.
/
1024.
);
string
::
PrettyLogDetail
(
"--- Saved %d MB"
,
memory_allocation
.
saved
/
1024.
/
1024.
);
argument
->
main_graph
().
Set
(
framework
::
ir
::
kGraphToProgramVarsToRemove
,
new
std
::
unordered_set
<
std
::
string
>
);
auto
&
vars2remove
=
argument
->
main_graph
().
Get
<
std
::
unordered_set
<
std
::
string
>>
(
framework
::
ir
::
kGraphToProgramVarsToRemove
);
PerformReusePlan
(
reuse_table
,
memory_allocation
.
sort_kind
,
&
vars2remove
);
argument
->
SetMemoryOptimSortKind
(
memory_allocation
.
sort_kind
);
}
}
}
float
MemoryOptimizePass
::
MemoryAllocation
::
GetSavingRatio
()
const
{
float
MemoryOptimizePass
::
MemoryAllocation
::
GetSavingRatio
()
const
{
...
...
paddle/fluid/inference/analysis/passes/memory_optimize_pass.h
浏览文件 @
53d558cd
...
@@ -13,9 +13,11 @@
...
@@ -13,9 +13,11 @@
// limitations under the License.
// limitations under the License.
#pragma once
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/
inference/analysis/passes/memory_optimize_pass
.h"
#include "paddle/fluid/
platform/port
.h"
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
53d558cd
...
@@ -95,7 +95,8 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
...
@@ -95,7 +95,8 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
CP_MEMBER
(
memory_pool_init_size_mb_
);
CP_MEMBER
(
memory_pool_init_size_mb_
);
CP_MEMBER
(
enable_memory_optim_
);
CP_MEMBER
(
enable_memory_optim_
);
CP_MEMBER
(
memory_optim_force_update_
);
CP_MEMBER
(
static_memory_optim_
);
CP_MEMBER
(
static_memory_optim_force_update_
);
// TensorRT releated.
// TensorRT releated.
CP_MEMBER
(
use_tensorrt_
);
CP_MEMBER
(
use_tensorrt_
);
CP_MEMBER
(
tensorrt_workspace_size_
);
CP_MEMBER
(
tensorrt_workspace_size_
);
...
@@ -238,7 +239,8 @@ std::string contrib::AnalysisConfig::SerializeInfoCache() {
...
@@ -238,7 +239,8 @@ std::string contrib::AnalysisConfig::SerializeInfoCache() {
ss
<<
tensorrt_min_subgraph_size_
;
ss
<<
tensorrt_min_subgraph_size_
;
ss
<<
enable_memory_optim_
;
ss
<<
enable_memory_optim_
;
ss
<<
memory_optim_force_update_
;
ss
<<
static_memory_optim_
;
ss
<<
static_memory_optim_force_update_
;
ss
<<
use_mkldnn_
;
ss
<<
use_mkldnn_
;
for
(
auto
&
item
:
mkldnn_enabled_op_types_
)
ss
<<
item
;
for
(
auto
&
item
:
mkldnn_enabled_op_types_
)
ss
<<
item
;
...
@@ -278,9 +280,11 @@ float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
...
@@ -278,9 +280,11 @@ float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#endif
#endif
}
}
void
contrib
::
AnalysisConfig
::
EnableMemoryOptim
(
bool
force_update_cache
)
{
void
contrib
::
AnalysisConfig
::
EnableMemoryOptim
(
bool
static_optim
,
bool
force_update_static_cache
)
{
enable_memory_optim_
=
true
;
enable_memory_optim_
=
true
;
memory_optim_force_update_
=
force_update_cache
;
static_memory_optim_
=
static_optim
;
static_memory_optim_force_update_
=
force_update_static_cache
;
Update
();
Update
();
}
}
...
@@ -300,4 +304,16 @@ void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
...
@@ -300,4 +304,16 @@ void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
Update
();
Update
();
}
}
NativeConfig
contrib
::
AnalysisConfig
::
ToNativeConfig
()
const
{
NativeConfig
config
;
config
.
model_dir
=
model_dir_
;
config
.
prog_file
=
prog_file_
;
config
.
param_file
=
params_file_
;
config
.
use_gpu
=
use_gpu_
;
config
.
device
=
device_id_
;
config
.
fraction_of_gpu_memory
=
fraction_of_gpu_memory_for_pool
();
config
.
specify_input_name
=
specify_input_name_
;
return
config
;
}
}
// namespace paddle
}
// namespace paddle
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
53d558cd
...
@@ -298,15 +298,15 @@ void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
...
@@ -298,15 +298,15 @@ void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
bool
AnalysisPredictor
::
GetFetch
(
std
::
vector
<
PaddleTensor
>
*
outputs
,
bool
AnalysisPredictor
::
GetFetch
(
std
::
vector
<
PaddleTensor
>
*
outputs
,
framework
::
Scope
*
scope
)
{
framework
::
Scope
*
scope
)
{
VLOG
(
3
)
<<
"Predictor::get_fetch"
;
VLOG
(
3
)
<<
"Predictor::get_fetch"
;
outputs
->
resize
(
fetchs_
.
size
());
outputs
->
resize
(
fetch
e
s_
.
size
());
for
(
size_t
i
=
0
;
i
<
fetchs_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
fetch
e
s_
.
size
();
++
i
)
{
int
idx
=
boost
::
get
<
int
>
(
fetchs_
[
i
]
->
GetAttr
(
"col"
));
int
idx
=
boost
::
get
<
int
>
(
fetch
e
s_
[
i
]
->
GetAttr
(
"col"
));
PADDLE_ENFORCE
((
size_t
)
idx
==
i
);
PADDLE_ENFORCE
((
size_t
)
idx
==
i
);
framework
::
LoDTensor
&
fetch
=
framework
::
LoDTensor
&
fetch
=
framework
::
GetFetchVariable
(
*
scope
,
"fetch"
,
idx
);
framework
::
GetFetchVariable
(
*
scope
,
"fetch"
,
idx
);
auto
type
=
fetch
.
type
();
auto
type
=
fetch
.
type
();
auto
output
=
&
(
outputs
->
at
(
i
));
auto
output
=
&
(
outputs
->
at
(
i
));
output
->
name
=
fetchs_
[
idx
]
->
Input
(
"X"
)[
0
];
output
->
name
=
fetch
e
s_
[
idx
]
->
Input
(
"X"
)[
0
];
if
(
type
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
type
==
framework
::
proto
::
VarType
::
FP32
)
{
GetFetchOne
<
float
>
(
fetch
,
output
);
GetFetchOne
<
float
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
FLOAT32
;
output
->
dtype
=
PaddleDType
::
FLOAT32
;
...
@@ -327,7 +327,9 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
...
@@ -327,7 +327,9 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
argument_
.
SetUseGPU
(
config_
.
use_gpu
());
argument_
.
SetUseGPU
(
config_
.
use_gpu
());
argument_
.
SetGPUDeviceId
(
config_
.
gpu_device_id
());
argument_
.
SetGPUDeviceId
(
config_
.
gpu_device_id
());
argument_
.
SetEnableMemoryOptim
(
config_
.
enable_memory_optim
());
argument_
.
SetEnableMemoryOptim
(
config_
.
enable_memory_optim
());
argument_
.
SetMemoryOptimForceUpdate
(
config_
.
memory_optim_force_update_
);
argument_
.
SetStaticMemoryOptim
(
config_
.
static_memory_optim_
);
argument_
.
SetStaticMemoryOptimForceUpdate
(
config_
.
static_memory_optim_force_update_
);
argument_
.
SetModelFromMemory
(
config_
.
model_from_memory_
);
argument_
.
SetModelFromMemory
(
config_
.
model_from_memory_
);
// Analyze inference_program
// Analyze inference_program
if
(
!
config_
.
model_dir
().
empty
())
{
if
(
!
config_
.
model_dir
().
empty
())
{
...
@@ -422,10 +424,10 @@ void AnalysisPredictor::PrepareFeedFetch() {
...
@@ -422,10 +424,10 @@ void AnalysisPredictor::PrepareFeedFetch() {
feed_names_
[
op
->
Output
(
"Out"
)[
0
]]
=
idx
;
feed_names_
[
op
->
Output
(
"Out"
)[
0
]]
=
idx
;
}
else
if
(
op
->
Type
()
==
"fetch"
)
{
}
else
if
(
op
->
Type
()
==
"fetch"
)
{
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
int
idx
=
boost
::
get
<
int
>
(
op
->
GetAttr
(
"col"
));
if
(
fetchs_
.
size
()
<=
static_cast
<
size_t
>
(
idx
))
{
if
(
fetch
e
s_
.
size
()
<=
static_cast
<
size_t
>
(
idx
))
{
fetchs_
.
resize
(
idx
+
1
);
fetch
e
s_
.
resize
(
idx
+
1
);
}
}
fetchs_
[
idx
]
=
op
;
fetch
e
s_
[
idx
]
=
op
;
}
}
}
}
}
}
...
@@ -638,12 +640,12 @@ bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
...
@@ -638,12 +640,12 @@ bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
// check if the cache exists
// check if the cache exists
if
(
!
config_
.
enable_memory_optim
())
{
if
(
!
config_
.
enable_memory_optim
())
{
need
=
false
;
need
=
false
;
}
else
if
(
config_
.
enable_memory_optim
()
&&
}
else
if
(
config_
.
static_memory_optim_
&&
!
inference
::
IsFileExists
(
inference
::
analysis
::
GetMemoryCachePath
(
!
inference
::
IsFileExists
(
inference
::
analysis
::
GetMemoryCachePath
(
config_
.
model_dir
(),
config_
.
prog_file
())))
{
config_
.
model_dir
(),
config_
.
prog_file
())))
{
need
=
true
;
need
=
true
;
}
else
if
(
config_
.
enable_memory_optim
()
&&
}
else
if
(
config_
.
static_memory_optim_
&&
config_
.
memory_optim_force_update_
)
{
config_
.
static_
memory_optim_force_update_
)
{
need
=
true
;
need
=
true
;
}
}
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
53d558cd
...
@@ -115,7 +115,7 @@ class AnalysisPredictor : public PaddlePredictor {
...
@@ -115,7 +115,7 @@ class AnalysisPredictor : public PaddlePredictor {
std
::
shared_ptr
<
framework
::
ProgramDesc
>
inference_program_
;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
inference_program_
;
std
::
vector
<
framework
::
OpDesc
*>
feeds_
;
std
::
vector
<
framework
::
OpDesc
*>
feeds_
;
std
::
map
<
std
::
string
,
size_t
>
feed_names_
;
std
::
map
<
std
::
string
,
size_t
>
feed_names_
;
std
::
vector
<
framework
::
OpDesc
*>
fetchs_
;
std
::
vector
<
framework
::
OpDesc
*>
fetch
e
s_
;
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, wrong results and memory leak, so cache them.
// concurrency problems, wrong results and memory leak, so cache them.
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
53d558cd
...
@@ -162,17 +162,7 @@ struct AnalysisConfig {
...
@@ -162,17 +162,7 @@ struct AnalysisConfig {
/** Transform the AnalysisConfig to NativeConfig.
/** Transform the AnalysisConfig to NativeConfig.
*/
*/
NativeConfig
ToNativeConfig
()
const
{
NativeConfig
ToNativeConfig
()
const
;
NativeConfig
config
;
config
.
model_dir
=
model_dir_
;
config
.
prog_file
=
prog_file_
;
config
.
param_file
=
params_file_
;
config
.
use_gpu
=
use_gpu_
;
config
.
device
=
device_id_
;
config
.
fraction_of_gpu_memory
=
fraction_of_gpu_memory_for_pool
();
config
.
specify_input_name
=
specify_input_name_
;
return
config
;
}
/** Specify the operator type list to use MKLDNN acceleration.
/** Specify the operator type list to use MKLDNN acceleration.
* @param op_list the operator type list.
* @param op_list the operator type list.
*/
*/
...
@@ -195,7 +185,8 @@ struct AnalysisConfig {
...
@@ -195,7 +185,8 @@ struct AnalysisConfig {
/** Turn on memory optimize
/** Turn on memory optimize
* NOTE still in development, will release latter.
* NOTE still in development, will release latter.
*/
*/
void
EnableMemoryOptim
(
bool
force_update_cache
=
false
);
void
EnableMemoryOptim
(
bool
static_optim
=
false
,
bool
force_update_static_cache
=
false
);
/** Tell whether the memory optimization is activated. */
/** Tell whether the memory optimization is activated. */
bool
enable_memory_optim
()
const
;
bool
enable_memory_optim
()
const
;
...
@@ -241,7 +232,8 @@ struct AnalysisConfig {
...
@@ -241,7 +232,8 @@ struct AnalysisConfig {
// memory reuse related.
// memory reuse related.
bool
enable_memory_optim_
{
false
};
bool
enable_memory_optim_
{
false
};
bool
memory_optim_force_update_
{
false
};
bool
static_memory_optim_
{
false
};
bool
static_memory_optim_force_update_
{
false
};
bool
use_mkldnn_
{
false
};
bool
use_mkldnn_
{
false
};
std
::
unordered_set
<
std
::
string
>
mkldnn_enabled_op_types_
;
std
::
unordered_set
<
std
::
string
>
mkldnn_enabled_op_types_
;
...
...
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
浏览文件 @
53d558cd
...
@@ -253,7 +253,7 @@ void compare(bool use_mkldnn = false) {
...
@@ -253,7 +253,7 @@ void compare(bool use_mkldnn = false) {
}
}
// Compare result of NativeConfig and AnalysisConfig with memory optimization.
// Compare result of NativeConfig and AnalysisConfig with memory optimization.
TEST
(
Analyzer_dam
,
compare_with_memory_optim
)
{
TEST
(
Analyzer_dam
,
compare_with_
static_
memory_optim
)
{
// The small dam will core in CI, but works in local.
// The small dam will core in CI, but works in local.
if
(
FLAGS_max_turn_num
==
9
)
{
if
(
FLAGS_max_turn_num
==
9
)
{
contrib
::
AnalysisConfig
cfg
,
cfg1
;
contrib
::
AnalysisConfig
cfg
,
cfg1
;
...
@@ -263,7 +263,7 @@ TEST(Analyzer_dam, compare_with_memory_optim) {
...
@@ -263,7 +263,7 @@ TEST(Analyzer_dam, compare_with_memory_optim) {
SetInput
(
&
input_slots_all
);
SetInput
(
&
input_slots_all
);
// Run the first time to force to update memory cache
// Run the first time to force to update memory cache
SetConfig
(
&
cfg
);
SetConfig
(
&
cfg
);
cfg
.
EnableMemoryOptim
(
true
);
cfg
.
EnableMemoryOptim
(
true
,
true
/*force update*/
);
CompareNativeAndAnalysis
(
CompareNativeAndAnalysis
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
...
@@ -271,7 +271,7 @@ TEST(Analyzer_dam, compare_with_memory_optim) {
...
@@ -271,7 +271,7 @@ TEST(Analyzer_dam, compare_with_memory_optim) {
// Run second time to use the memory cache and perform memory optimization.
// Run second time to use the memory cache and perform memory optimization.
SetConfig
(
&
cfg1
);
SetConfig
(
&
cfg1
);
cfg1
.
EnableMemoryOptim
();
cfg1
.
EnableMemoryOptim
(
true
,
false
/*do not force update*/
);
CompareNativeAndAnalysis
(
CompareNativeAndAnalysis
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg1
),
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg1
),
...
@@ -279,6 +279,24 @@ TEST(Analyzer_dam, compare_with_memory_optim) {
...
@@ -279,6 +279,24 @@ TEST(Analyzer_dam, compare_with_memory_optim) {
}
}
}
}
TEST
(
Analyzer_dam
,
compare_with_dynamic_memory_optim
)
{
// The small dam will core in CI, but works in local.
if
(
FLAGS_max_turn_num
==
9
)
{
contrib
::
AnalysisConfig
cfg
,
cfg1
;
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
// Run the first time to force to update memory cache
SetConfig
(
&
cfg
);
cfg
.
EnableMemoryOptim
();
CompareNativeAndAnalysis
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
}
TEST
(
Analyzer_dam
,
compare
)
{
compare
();
}
TEST
(
Analyzer_dam
,
compare
)
{
compare
();
}
#ifdef PADDLE_WITH_MKLDNN
#ifdef PADDLE_WITH_MKLDNN
...
...
paddle/fluid/operators/distributed/request_handler_impl.cc
浏览文件 @
53d558cd
...
@@ -54,6 +54,11 @@ bool RequestSendHandler::Handle(const std::string& varname,
...
@@ -54,6 +54,11 @@ bool RequestSendHandler::Handle(const std::string& varname,
// Async
// Async
if
(
!
sync_mode_
)
{
if
(
!
sync_mode_
)
{
VLOG
(
3
)
<<
"async process var: "
<<
varname
;
VLOG
(
3
)
<<
"async process var: "
<<
varname
;
if
(
varname
==
BATCH_BARRIER_MESSAGE
)
{
PADDLE_THROW
(
"async mode should not recv BATCH_BARRIER_MESSAGE or "
"COMPLETE_MESSAGE"
);
}
try
{
try
{
executor_
->
RunPreparedContext
((
*
grad_to_prepared_ctx_
)[
varname
].
get
(),
executor_
->
RunPreparedContext
((
*
grad_to_prepared_ctx_
)[
varname
].
get
(),
scope
);
scope
);
...
...
paddle/fluid/operators/distributed/rpc_server.cc
浏览文件 @
53d558cd
...
@@ -39,27 +39,33 @@ void RPCServer::SavePort() const {
...
@@ -39,27 +39,33 @@ void RPCServer::SavePort() const {
port_file
.
open
(
file_path
);
port_file
.
open
(
file_path
);
port_file
<<
selected_port_
;
port_file
<<
selected_port_
;
port_file
.
close
();
port_file
.
close
();
VLOG
(
4
)
<<
"selected port written to "
<<
file_path
;
VLOG
(
3
)
<<
"selected port written to "
<<
file_path
;
}
}
void
RPCServer
::
WaitBarrier
(
const
std
::
string
&
rpc_name
)
{
void
RPCServer
::
WaitBarrier
(
const
std
::
string
&
rpc_name
)
{
VLOG
(
3
)
<<
"WaitBarrier in: "
<<
rpc_name
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
this
->
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
this
->
mutex_
);
barrier_cond_
.
wait
(
lock
,
[
this
,
&
rpc_name
]
{
barrier_cond_
.
wait
(
lock
,
[
this
,
&
rpc_name
]
{
return
((
barrier_counter_
[
rpc_name
]
==
client_num_
&&
client_num_
!=
0
)
||
return
((
barrier_counter_
[
rpc_name
]
==
client_num_
&&
client_num_
!=
0
)
||
exit_flag_
.
load
());
exit_flag_
.
load
());
});
});
VLOG
(
3
)
<<
"
batch_barrier_: "
<<
rpc_name
<<
" "
VLOG
(
3
)
<<
"
WaitBarrier out: "
<<
rpc_name
<<
barrier_counter_
[
rpc_name
];
<<
" counter: "
<<
barrier_counter_
[
rpc_name
];
}
}
void
RPCServer
::
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
)
{
void
RPCServer
::
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
)
{
VLOG
(
4
)
<<
"RPCServer begin IncreaseBatchBarrier "
<<
rpc_name
;
VLOG
(
3
)
<<
"RPCServer begin IncreaseBatchBarrier "
<<
rpc_name
;
// barrier msg should make sure that it's in the right cond(send|recv)
WaitCond
(
rpc_name
);
int
b
=
0
;
int
b
=
0
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
b
=
++
barrier_counter_
[
rpc_name
];
b
=
++
barrier_counter_
[
rpc_name
];
VLOG
(
3
)
<<
rpc_name
<<
" barrier_counter: "
<<
b
;
if
(
b
>=
client_num_
)
{
if
(
b
>=
client_num_
)
{
lock
.
unlock
();
lock
.
unlock
();
VLOG
(
3
)
<<
"BatchBarrier counter reach "
<<
client_num_
<<
" for "
<<
rpc_name
;
barrier_cond_
.
notify_all
();
barrier_cond_
.
notify_all
();
lock
.
lock
();
lock
.
lock
();
}
}
...
@@ -71,7 +77,7 @@ void RPCServer::Complete() {
...
@@ -71,7 +77,7 @@ void RPCServer::Complete() {
client_num_
--
;
client_num_
--
;
need_reset_all_vars_
=
true
;
need_reset_all_vars_
=
true
;
VLOG
(
4
)
<<
"decrease client_num to: "
<<
client_num_
;
VLOG
(
3
)
<<
"decrease client_num to: "
<<
client_num_
;
if
(
cur_cond_
.
load
()
==
rpc_cond_map_
[
kRequestGet
])
{
if
(
cur_cond_
.
load
()
==
rpc_cond_map_
[
kRequestGet
])
{
barrier_counter_
[
kRequestGet
]
--
;
barrier_counter_
[
kRequestGet
]
--
;
}
}
...
@@ -105,8 +111,8 @@ void RPCServer::RegisterRPC(const std::string& rpc_name,
...
@@ -105,8 +111,8 @@ void RPCServer::RegisterRPC(const std::string& rpc_name,
static
int
cond
=
-
1
;
static
int
cond
=
-
1
;
rpc_cond_map_
[
rpc_name
]
=
++
cond
;
rpc_cond_map_
[
rpc_name
]
=
++
cond
;
VLOG
(
4
)
<<
"RegisterRPC rpc_name:"
<<
rpc_name
<<
", handler:
"
<<
handler
VLOG
(
3
)
<<
"RegisterRPC rpc_name: "
<<
rpc_name
<<
", handler:
"
<<
handler
<<
", cond:"
<<
rpc_cond_map_
[
rpc_name
];
<<
", cond:
"
<<
rpc_cond_map_
[
rpc_name
];
}
}
void
RPCServer
::
SetCond
(
const
std
::
string
&
rpc_name
)
{
void
RPCServer
::
SetCond
(
const
std
::
string
&
rpc_name
)
{
...
@@ -120,7 +126,7 @@ void RPCServer::SetCond(const std::string& rpc_name) {
...
@@ -120,7 +126,7 @@ void RPCServer::SetCond(const std::string& rpc_name) {
}
}
void
RPCServer
::
WaitCond
(
const
std
::
string
&
rpc_name
)
{
void
RPCServer
::
WaitCond
(
const
std
::
string
&
rpc_name
)
{
VLOG
(
4
)
<<
"RPCServer WaitCond
"
<<
rpc_name
;
VLOG
(
3
)
<<
"RPCServer WaitCond in
"
<<
rpc_name
;
int
cond
=
0
;
int
cond
=
0
;
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
...
@@ -130,6 +136,7 @@ void RPCServer::WaitCond(const std::string& rpc_name) {
...
@@ -130,6 +136,7 @@ void RPCServer::WaitCond(const std::string& rpc_name) {
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
rpc_cond_
.
wait
(
rpc_cond_
.
wait
(
lock
,
[
=
]
{
return
(
cur_cond_
.
load
()
==
cond
||
exit_flag_
.
load
());
});
lock
,
[
=
]
{
return
(
cur_cond_
.
load
()
==
cond
||
exit_flag_
.
load
());
});
VLOG
(
3
)
<<
"RPCServer WaitCond out "
<<
rpc_name
;
}
}
void
RPCServer
::
RegisterVar
(
const
std
::
string
&
var_name
,
void
RPCServer
::
RegisterVar
(
const
std
::
string
&
var_name
,
...
@@ -151,7 +158,7 @@ void RPCServer::RegisterVar(const std::string& var_name,
...
@@ -151,7 +158,7 @@ void RPCServer::RegisterVar(const std::string& var_name,
}
}
rpc_cond_
.
notify_all
();
rpc_cond_
.
notify_all
();
VLOG
(
4
)
<<
"RegisterVar context:"
<<
h
.
String
();
VLOG
(
3
)
<<
"RegisterVar context:"
<<
h
.
String
();
}
}
void
RPCServer
::
IncreaseVarBarrier
(
const
std
::
string
&
var_name
)
{
void
RPCServer
::
IncreaseVarBarrier
(
const
std
::
string
&
var_name
)
{
...
@@ -167,11 +174,11 @@ void RPCServer::IncreaseVarBarrier(const std::string& var_name) {
...
@@ -167,11 +174,11 @@ void RPCServer::IncreaseVarBarrier(const std::string& var_name) {
barrier_cond_
.
notify_all
();
barrier_cond_
.
notify_all
();
}
}
VLOG
(
4
)
<<
"IncreaseVarBarrier context:"
<<
h
.
String
();
VLOG
(
3
)
<<
"IncreaseVarBarrier context:"
<<
h
.
String
();
}
}
void
RPCServer
::
WaitVarBarrier
(
const
std
::
string
&
var_name
)
{
void
RPCServer
::
WaitVarBarrier
(
const
std
::
string
&
var_name
)
{
VLOG
(
4
)
<<
"Wait
Barrier var_name:"
<<
var_name
;
VLOG
(
3
)
<<
"WaitVar
Barrier var_name:"
<<
var_name
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
barrier_cond_
.
wait
(
lock
,
[
&
]()
{
barrier_cond_
.
wait
(
lock
,
[
&
]()
{
...
@@ -179,11 +186,11 @@ void RPCServer::WaitVarBarrier(const std::string& var_name) {
...
@@ -179,11 +186,11 @@ void RPCServer::WaitVarBarrier(const std::string& var_name) {
exit_flag_
.
load
());
exit_flag_
.
load
());
});
});
VLOG
(
4
)
<<
"Wait
Barrier context: "
<<
var_map_
[
var_name
].
String
();
VLOG
(
3
)
<<
"WaitVar
Barrier context: "
<<
var_map_
[
var_name
].
String
();
}
}
void
RPCServer
::
SetVarCond
(
const
std
::
string
&
var_name
)
{
void
RPCServer
::
SetVarCond
(
const
std
::
string
&
var_name
)
{
VLOG
(
4
)
<<
"SetVarCond var_name:"
<<
var_name
;
VLOG
(
3
)
<<
"SetVarCond var_name:"
<<
var_name
;
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
if
(
var_map_
.
find
(
var_name
)
!=
var_map_
.
end
())
{
if
(
var_map_
.
find
(
var_name
)
!=
var_map_
.
end
())
{
...
@@ -193,14 +200,14 @@ void RPCServer::SetVarCond(const std::string& var_name) {
...
@@ -193,14 +200,14 @@ void RPCServer::SetVarCond(const std::string& var_name) {
}
}
void
RPCServer
::
WaitVarCond
(
const
std
::
string
&
var_name
)
{
void
RPCServer
::
WaitVarCond
(
const
std
::
string
&
var_name
)
{
VLOG
(
4
)
<<
"WaitVarCond var_name:"
<<
var_name
;
VLOG
(
3
)
<<
"WaitVarCond var_name:"
<<
var_name
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
rpc_cond_
.
wait
(
lock
,
[
=
]
{
rpc_cond_
.
wait
(
lock
,
[
=
]
{
return
(
var_map_
.
find
(
var_name
)
!=
var_map_
.
end
()
||
exit_flag_
.
load
());
return
(
var_map_
.
find
(
var_name
)
!=
var_map_
.
end
()
||
exit_flag_
.
load
());
});
});
VLOG
(
4
)
<<
"WaitVarCond var_name:"
<<
var_name
<<
" end"
;
VLOG
(
3
)
<<
"WaitVarCond var_name:"
<<
var_name
<<
" end"
;
}
}
MonomerHandle
RPCServer
::
GetMonomer
(
const
std
::
string
&
var_name
)
{
MonomerHandle
RPCServer
::
GetMonomer
(
const
std
::
string
&
var_name
)
{
...
...
paddle/fluid/operators/distributed_ops/listen_and_serv_op.cc
浏览文件 @
53d558cd
...
@@ -137,7 +137,9 @@ void ListenAndServOp::RunSyncLoop(
...
@@ -137,7 +137,9 @@ void ListenAndServOp::RunSyncLoop(
while
(
true
)
{
while
(
true
)
{
// Get from multiple trainers, we don't care about the order in which
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
// the gradients arrives, just add suffix 0~n and merge the gradient.
VLOG
(
3
)
<<
"wait all clients to send gradient"
;
rpc_service_
->
SetCond
(
distributed
::
kRequestSend
);
rpc_service_
->
SetCond
(
distributed
::
kRequestSend
);
VLOG
(
3
)
<<
"wait all clients to send send_barrier"
;
rpc_service_
->
WaitBarrier
(
distributed
::
kRequestSend
);
rpc_service_
->
WaitBarrier
(
distributed
::
kRequestSend
);
if
(
rpc_service_
->
IsExit
())
{
if
(
rpc_service_
->
IsExit
())
{
...
@@ -168,12 +170,16 @@ void ListenAndServOp::RunSyncLoop(
...
@@ -168,12 +170,16 @@ void ListenAndServOp::RunSyncLoop(
}
}
ParallelExecuteBlocks
(
parallel_blkids
,
executor
,
optimize_prepared
,
program
,
ParallelExecuteBlocks
(
parallel_blkids
,
executor
,
optimize_prepared
,
program
,
recv_scope
);
recv_scope
);
VLOG
(
2
)
<<
"run all blocks spent "
<<
GetTimestamp
()
-
ts
<<
"(ms)"
;
VLOG
(
3
)
<<
"run all blocks spent "
<<
GetTimestamp
()
-
ts
<<
"(ms)"
;
VLOG
(
3
)
<<
"ResetReceivedVars"
;
ResetReceivedVars
(
recv_scope
,
dev_ctx
,
rpc_service_
->
NeedResetAllVars
());
ResetReceivedVars
(
recv_scope
,
dev_ctx
,
rpc_service_
->
NeedResetAllVars
());
VLOG
(
3
)
<<
"wait all clients to get parameters back"
;
rpc_service_
->
SetCond
(
distributed
::
kRequestGet
);
rpc_service_
->
SetCond
(
distributed
::
kRequestGet
);
VLOG
(
3
)
<<
"wait all clients to send fetch_barrier"
;
rpc_service_
->
WaitBarrier
(
distributed
::
kRequestGet
);
rpc_service_
->
WaitBarrier
(
distributed
::
kRequestGet
);
VLOG
(
3
)
<<
"ResetBarrierCounter"
;
rpc_service_
->
ResetBarrierCounter
();
rpc_service_
->
ResetBarrierCounter
();
}
// while(true)
}
// while(true)
}
}
...
...
paddle/fluid/operators/grid_sampler_op.cc
浏览文件 @
53d558cd
...
@@ -43,12 +43,14 @@ class GridSampleOp : public framework::OperatorWithKernel {
...
@@ -43,12 +43,14 @@ class GridSampleOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
grid_dims
[
3
]
==
2
,
"Input(Grid) dims[3] should be 2."
);
PADDLE_ENFORCE
(
grid_dims
[
3
]
==
2
,
"Input(Grid) dims[3] should be 2."
);
PADDLE_ENFORCE_EQ
(
grid_dims
[
0
],
x_dims
[
0
],
PADDLE_ENFORCE_EQ
(
grid_dims
[
0
],
x_dims
[
0
],
"Input(X) and Input(Grid) dims[0] should be equal."
);
"Input(X) and Input(Grid) dims[0] should be equal."
);
PADDLE_ENFORCE_EQ
(
if
(
ctx
->
IsRuntime
())
{
grid_dims
[
1
],
x_dims
[
2
],
PADDLE_ENFORCE_EQ
(
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
);
grid_dims
[
1
],
x_dims
[
2
],
PADDLE_ENFORCE_EQ
(
"Input(X) dims[2] and Input(Grid) dims[1] should be equal."
);
grid_dims
[
2
],
x_dims
[
3
],
PADDLE_ENFORCE_EQ
(
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
);
grid_dims
[
2
],
x_dims
[
3
],
"Input(X) dims[3] and Input(Grid) dims[2] should be equal."
);
}
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
ctx
->
SetOutputDim
(
"Output"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
"Output"
);
ctx
->
ShareLoD
(
"X"
,
"Output"
);
...
...
paddle/fluid/operators/ngraph/CMakeLists.txt
浏览文件 @
53d558cd
if
(
WITH_NGRAPH
)
if
(
WITH_NGRAPH
)
cc_library
(
ngraph_bridge SRCS ngraph_bridge.cc DEPS operator framework_proto ngraph
)
cc_library
(
ngraph_engine SRCS ngraph_engine.cc DEPS ngraph_bridge framework_proto
)
cc_library
(
ngraph_engine SRCS ngraph_engine.cc DEPS ngraph_bridge framework_proto
)
op_library
(
ngraph_engine_op DEPS ngraph_engine op_registry op_info device_context
)
op_library
(
ngraph_engine_op DEPS ngraph_engine op_registry op_info device_context
)
endif
()
endif
()
paddle/fluid/
framework
/ngraph_bridge.cc
→
paddle/fluid/
operators/ngraph
/ngraph_bridge.cc
浏览文件 @
53d558cd
...
@@ -17,39 +17,39 @@ limitations under the License. */
...
@@ -17,39 +17,39 @@ limitations under the License. */
#include <vector>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/ngraph/ngraph_ops.h"
#include "paddle/fluid/operators/ngraph/ngraph_ops.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/ngraph_helper.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
operators
{
namespace
NG_OPS
=
paddle
::
operators
::
ngraphs
;
namespace
NG_OPS
=
paddle
::
operators
::
ngraphs
;
std
::
map
<
std
::
string
,
std
::
map
<
std
::
string
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
OperatorBase
>&
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
framework
::
OperatorBase
>&
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
NgraphBridge
::
NG_NODE_MAP
=
{
NgraphBridge
::
NG_NODE_MAP
=
{
{
"elementwise_add"
,
NG_OPS
::
BuildElementwiseAddNode
},
{
"elementwise_add"
,
NG_OPS
::
BuildElementwiseAddNode
},
{
"elementwise_add_grad"
,
NG_OPS
::
BuildElementwiseAddGradNode
},
{
"elementwise_add_grad"
,
NG_OPS
::
BuildElementwiseAddGradNode
},
{
"fill_constant"
,
paddle
::
operators
::
ngraphs
::
BuildFillConstantNode
},
{
"fill_constant"
,
NG_OPS
::
BuildFillConstantNode
},
{
"mean"
,
paddle
::
operators
::
ngraphs
::
BuildMeanNode
},
{
"mean"
,
NG_OPS
::
BuildMeanNode
},
{
"mean_grad"
,
paddle
::
operators
::
ngraphs
::
BuildMeanGradNode
},
{
"mean_grad"
,
NG_OPS
::
BuildMeanGradNode
},
{
"mul"
,
paddle
::
operators
::
ngraphs
::
BuildMulNode
},
{
"mul"
,
NG_OPS
::
BuildMulNode
},
{
"mul_grad"
,
paddle
::
operators
::
ngraphs
::
BuildMulGradNode
},
{
"mul_grad"
,
NG_OPS
::
BuildMulGradNode
},
{
"softmax"
,
paddle
::
operators
::
ngraphs
::
BuildSoftmaxNode
},
{
"softmax"
,
NG_OPS
::
BuildSoftmaxNode
},
{
"softmax_grad"
,
paddle
::
operators
::
ngraphs
::
BuildSoftmaxGradNode
},
{
"softmax_grad"
,
NG_OPS
::
BuildSoftmaxGradNode
},
{
"scale"
,
paddle
::
operators
::
ngraphs
::
BuildScaleNode
},
{
"scale"
,
NG_OPS
::
BuildScaleNode
},
{
"relu"
,
paddle
::
operators
::
ngraphs
::
BuildUnaryNode
<
ngraph
::
op
::
Relu
>
},
{
"relu"
,
NG_OPS
::
BuildUnaryNode
<
ngraph
::
op
::
Relu
>
},
{
"tanh"
,
paddle
::
operators
::
ngraphs
::
BuildUnaryNode
<
ngraph
::
op
::
Tanh
>
},
{
"tanh"
,
NG_OPS
::
BuildUnaryNode
<
ngraph
::
op
::
Tanh
>
},
{
"top_k"
,
paddle
::
operators
::
ngraphs
::
BuildTopKNode
}};
{
"top_k"
,
NG_OPS
::
BuildTopKNode
}};
void
NgraphBridge
::
BuildNgNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
NgraphBridge
::
BuildNgNode
(
const
std
::
shared_ptr
<
framework
::
OperatorBase
>&
op
)
{
auto
&
op_type
=
op
->
Type
();
auto
&
op_type
=
op
->
Type
();
NG_NODE_MAP
[
op_type
](
op
,
ngb_node_map_
);
NG_NODE_MAP
[
op_type
](
op
,
ngb_node_map_
);
}
}
}
// namespace
framework
}
// namespace
operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/
framework
/ngraph_bridge.h
→
paddle/fluid/
operators/ngraph
/ngraph_bridge.h
浏览文件 @
53d558cd
...
@@ -21,16 +21,16 @@ limitations under the License. */
...
@@ -21,16 +21,16 @@ limitations under the License. */
#include "ngraph/node.hpp"
#include "ngraph/node.hpp"
namespace
paddle
{
#include "paddle/fluid/framework/operator.h"
namespace
framework
{
class
OperatorBase
;
namespace
paddle
{
namespace
operators
{
class
NgraphBridge
{
class
NgraphBridge
{
public:
public:
static
std
::
map
<
static
std
::
map
<
std
::
string
,
std
::
string
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
OperatorBase
>&
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
framework
::
OperatorBase
>&
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
NG_NODE_MAP
;
NG_NODE_MAP
;
...
@@ -41,7 +41,7 @@ class NgraphBridge {
...
@@ -41,7 +41,7 @@ class NgraphBridge {
var_node_map
)
var_node_map
)
:
ngb_node_map_
(
var_node_map
)
{}
:
ngb_node_map_
(
var_node_map
)
{}
void
BuildNgNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
);
void
BuildNgNode
(
const
std
::
shared_ptr
<
framework
::
OperatorBase
>&
op
);
private:
private:
std
::
shared_ptr
<
std
::
shared_ptr
<
...
@@ -49,5 +49,5 @@ class NgraphBridge {
...
@@ -49,5 +49,5 @@ class NgraphBridge {
ngb_node_map_
;
ngb_node_map_
;
};
};
}
// namespace
framework
}
// namespace
operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/ngraph/ngraph_engine.cc
浏览文件 @
53d558cd
...
@@ -24,11 +24,11 @@ limitations under the License. */
...
@@ -24,11 +24,11 @@ limitations under the License. */
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -88,15 +88,14 @@ static std::vector<std::vector<int>> NgraphOpIntervals(
...
@@ -88,15 +88,14 @@ static std::vector<std::vector<int>> NgraphOpIntervals(
int
pivot
=
left
;
int
pivot
=
left
;
while
(
pivot
<
right
)
{
while
(
pivot
<
right
)
{
auto
op_type
=
ops
.
at
(
pivot
)
->
Type
();
auto
op_type
=
ops
.
at
(
pivot
)
->
Type
();
if
(
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
find
(
op_type
)
==
if
(
NgraphBridge
::
NG_NODE_MAP
.
find
(
op_type
)
==
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
end
())
{
NgraphBridge
::
NG_NODE_MAP
.
end
())
{
++
pivot
;
++
pivot
;
}
else
{
}
else
{
int
start
=
pivot
,
end
=
start
;
int
start
=
pivot
,
end
=
start
;
while
(
pivot
<
right
&&
while
(
pivot
<
right
&&
(
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
find
(
(
NgraphBridge
::
NG_NODE_MAP
.
find
(
ops
.
at
(
pivot
)
->
Type
())
!=
ops
.
at
(
pivot
)
->
Type
())
!=
NgraphBridge
::
NG_NODE_MAP
.
end
()))
{
paddle
::
framework
::
NgraphBridge
::
NG_NODE_MAP
.
end
()))
{
++
pivot
;
++
pivot
;
++
end
;
++
end
;
}
}
...
@@ -283,7 +282,7 @@ void NgraphEngine::BuildNgNodes() {
...
@@ -283,7 +282,7 @@ void NgraphEngine::BuildNgNodes() {
}
}
}
}
}
}
framework
::
NgraphBridge
ngb
(
var_node_map_
);
NgraphBridge
ngb
(
var_node_map_
);
for
(
auto
&
op
:
fused_ops_
)
{
for
(
auto
&
op
:
fused_ops_
)
{
ngb
.
BuildNgNode
(
op
);
ngb
.
BuildNgNode
(
op
);
}
}
...
...
python/paddle/fluid/contrib/int8_inference/utility.py
浏览文件 @
53d558cd
...
@@ -32,10 +32,13 @@ class Calibrator(object):
...
@@ -32,10 +32,13 @@ class Calibrator(object):
def
__init__
(
self
,
*
args
,
**
kwargs
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
self
.
program
=
kwargs
[
'program'
]
self
.
program
=
kwargs
[
'program'
]
self
.
iterations
=
kwargs
[
'iterations'
]
self
.
pretrained_model
=
kwargs
[
'pretrained_model'
]
self
.
pretrained_model
=
kwargs
[
'pretrained_model'
]
self
.
debug
=
kwargs
[
'debug'
]
self
.
debug
=
kwargs
[
'debug'
]
if
'debug'
in
kwargs
else
False
self
.
algo
=
kwargs
[
'algo'
]
self
.
algo
=
kwargs
[
'algo'
]
self
.
output
=
kwargs
[
'output'
]
self
.
feed_var_names
=
kwargs
[
'feed_var_names'
]
self
.
fetch_list
=
kwargs
[
'fetch_list'
]
self
.
exe
=
kwargs
[
'exe'
]
self
.
_conv_input_var_name
=
[]
self
.
_conv_input_var_name
=
[]
self
.
_conv_output_var_name
=
[]
self
.
_conv_output_var_name
=
[]
...
@@ -54,17 +57,38 @@ class Calibrator(object):
...
@@ -54,17 +57,38 @@ class Calibrator(object):
self
.
_u8_output_var
=
[]
self
.
_u8_output_var
=
[]
self
.
_s8_output_var
=
[]
self
.
_s8_output_var
=
[]
self
.
_persistable_vars
=
[]
self
.
_persistable_vars
=
[]
self
.
_sampling_data
=
{}
def
generate_sampling_program
(
self
):
self
.
__init_analysis
()
self
.
__init_analysis
()
self
.
__generate_output_program
()
self
.
__generate_output_program
()
def
generate_quantized_data
(
self
,
sampling_data
):
def
save_int8_model
(
self
):
self
.
__sampling
(
sampling_data
)
self
.
__sampling
(
s
elf
.
_s
ampling_data
)
self
.
__save_scale
()
self
.
__save_scale
()
self
.
__update_program
()
self
.
__update_program
()
self
.
__update_output_program_attr
()
self
.
__update_output_program_attr
()
self
.
__display_debug
()
self
.
__display_debug
()
self
.
__save_offline_model
()
def
sample_data
(
self
):
'''
Sampling the tensor data of variable.
'''
for
i
in
self
.
sampling_program
.
list_vars
():
if
i
.
name
in
self
.
sampling_vars
:
np_data
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
i
.
name
)
.
get_tensor
())
if
i
.
name
not
in
self
.
_sampling_data
:
self
.
_sampling_data
[
i
.
name
]
=
[]
self
.
_sampling_data
[
i
.
name
].
append
(
np_data
)
def
__save_offline_model
(
self
):
'''
Save the quantized model to the disk.
'''
fluid
.
io
.
save_inference_model
(
self
.
output
,
self
.
feed_var_names
,
self
.
fetch_list
,
self
.
exe
,
self
.
sampling_program
)
def
__display_debug
(
self
):
def
__display_debug
(
self
):
if
self
.
debug
:
if
self
.
debug
:
...
...
python/paddle/fluid/contrib/tests/test_calibration.py
浏览文件 @
53d558cd
...
@@ -26,7 +26,7 @@ import paddle.fluid.profiler as profiler
...
@@ -26,7 +26,7 @@ import paddle.fluid.profiler as profiler
from
PIL
import
Image
,
ImageEnhance
from
PIL
import
Image
,
ImageEnhance
import
math
import
math
sys
.
path
.
append
(
'..'
)
sys
.
path
.
append
(
'..'
)
import
int8_inference.utility
as
ut
import
int8_inference.utility
as
int8_utility
random
.
seed
(
0
)
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
...
@@ -120,13 +120,13 @@ class TestCalibration(unittest.TestCase):
...
@@ -120,13 +120,13 @@ class TestCalibration(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
# TODO(guomingz): Put the download process in the cmake.
# TODO(guomingz): Put the download process in the cmake.
# Download and unzip test data set
# Download and unzip test data set
imagenet_dl_url
=
'http://paddle-inference-dist.
bj
.bcebos.com/int8/calibration_test_data.tar.gz'
imagenet_dl_url
=
'http://paddle-inference-dist.
cdn
.bcebos.com/int8/calibration_test_data.tar.gz'
zip_file_name
=
imagenet_dl_url
.
split
(
'/'
)[
-
1
]
zip_file_name
=
imagenet_dl_url
.
split
(
'/'
)[
-
1
]
cmd
=
'rm -rf data {} && mkdir data && wget {} && tar xvf {} -C data'
.
format
(
cmd
=
'rm -rf data {} && mkdir data && wget {} && tar xvf {} -C data'
.
format
(
zip_file_name
,
imagenet_dl_url
,
zip_file_name
)
zip_file_name
,
imagenet_dl_url
,
zip_file_name
)
os
.
system
(
cmd
)
os
.
system
(
cmd
)
# resnet50 fp32 data
# resnet50 fp32 data
resnet50_fp32_model_url
=
'http://paddle-inference-dist.
bj
.bcebos.com/int8/resnet50_int8_model.tar.gz'
resnet50_fp32_model_url
=
'http://paddle-inference-dist.
cdn
.bcebos.com/int8/resnet50_int8_model.tar.gz'
resnet50_zip_name
=
resnet50_fp32_model_url
.
split
(
'/'
)[
-
1
]
resnet50_zip_name
=
resnet50_fp32_model_url
.
split
(
'/'
)[
-
1
]
resnet50_unzip_folder_name
=
'resnet50_fp32'
resnet50_unzip_folder_name
=
'resnet50_fp32'
cmd
=
'rm -rf {} {} && mkdir {} && wget {} && tar xvf {} -C {}'
.
format
(
cmd
=
'rm -rf {} {} && mkdir {} && wget {} && tar xvf {} -C {}'
.
format
(
...
@@ -135,8 +135,7 @@ class TestCalibration(unittest.TestCase):
...
@@ -135,8 +135,7 @@ class TestCalibration(unittest.TestCase):
resnet50_zip_name
,
resnet50_unzip_folder_name
)
resnet50_zip_name
,
resnet50_unzip_folder_name
)
os
.
system
(
cmd
)
os
.
system
(
cmd
)
self
.
iterations
=
100
self
.
iterations
=
50
self
.
skip_batch_num
=
5
def
run_program
(
self
,
model_path
,
generate_int8
=
False
,
algo
=
'direct'
):
def
run_program
(
self
,
model_path
,
generate_int8
=
False
,
algo
=
'direct'
):
image_shape
=
[
3
,
224
,
224
]
image_shape
=
[
3
,
224
,
224
]
...
@@ -163,16 +162,15 @@ class TestCalibration(unittest.TestCase):
...
@@ -163,16 +162,15 @@ class TestCalibration(unittest.TestCase):
print
(
"Start calibration ..."
)
print
(
"Start calibration ..."
)
calibrator
=
ut
.
Calibrator
(
calibrator
=
int8_utility
.
Calibrator
(
program
=
infer_program
,
program
=
infer_program
,
pretrained_model
=
model_path
,
pretrained_model
=
model_path
,
iterations
=
100
,
algo
=
algo
,
debug
=
Fals
e
,
exe
=
ex
e
,
algo
=
algo
)
output
=
int8_model
,
feed_var_names
=
feed_dict
,
sampling_data
=
{}
fetch_list
=
fetch_targets
)
calibrator
.
generate_sampling_program
()
test_info
=
[]
test_info
=
[]
cnt
=
0
cnt
=
0
for
batch_id
,
data
in
enumerate
(
val_reader
()):
for
batch_id
,
data
in
enumerate
(
val_reader
()):
...
@@ -192,13 +190,7 @@ class TestCalibration(unittest.TestCase):
...
@@ -192,13 +190,7 @@ class TestCalibration(unittest.TestCase):
feed_dict
[
1
]:
label
},
feed_dict
[
1
]:
label
},
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
if
generate_int8
:
if
generate_int8
:
for
i
in
calibrator
.
sampling_program
.
list_vars
():
calibrator
.
sample_data
()
if
i
.
name
in
calibrator
.
sampling_vars
:
np_data
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
i
.
name
)
.
get_tensor
())
if
i
.
name
not
in
sampling_data
:
sampling_data
[
i
.
name
]
=
[]
sampling_data
[
i
.
name
].
append
(
np_data
)
test_info
.
append
(
np
.
mean
(
acc1
)
*
len
(
data
))
test_info
.
append
(
np
.
mean
(
acc1
)
*
len
(
data
))
cnt
+=
len
(
data
)
cnt
+=
len
(
data
)
...
@@ -209,9 +201,8 @@ class TestCalibration(unittest.TestCase):
...
@@ -209,9 +201,8 @@ class TestCalibration(unittest.TestCase):
break
break
if
generate_int8
:
if
generate_int8
:
calibrator
.
generate_quantized_data
(
sampling_data
)
calibrator
.
save_int8_model
()
fluid
.
io
.
save_inference_model
(
int8_model
,
feed_dict
,
fetch_targets
,
exe
,
calibrator
.
sampling_program
)
print
(
print
(
"Calibration is done and the corresponding files were generated at {}"
.
"Calibration is done and the corresponding files were generated at {}"
.
format
(
os
.
path
.
abspath
(
"calibration_out"
)))
format
(
os
.
path
.
abspath
(
"calibration_out"
)))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录