Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
53c8c36a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53c8c36a
编写于
3月 21, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"debug the process"
上级
e4c35d83
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
133 addition
and
88 deletion
+133
-88
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+1
-1
paddle/fluid/operators/sequence_expand_op.cu
paddle/fluid/operators/sequence_expand_op.cu
+84
-44
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+3
-0
python/paddle/fluid/tests/unittests/test_sequence_expand.py
python/paddle/fluid/tests/unittests/test_sequence_expand.py
+45
-43
未找到文件。
paddle/fluid/framework/executor.cc
浏览文件 @
53c8c36a
...
...
@@ -44,7 +44,7 @@ struct ExecutorPrepareContext {
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{}
const
framework
::
ProgramDesc
&
prog_
;
const
framework
::
ProgramDesc
prog_
;
size_t
block_id_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
};
...
...
paddle/fluid/operators/sequence_expand_op.cu
浏览文件 @
53c8c36a
...
...
@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include <stdio.h>
#include <algorithm>
#include "paddle/fluid/operators/sequence_expand_op.h"
#include "paddle/fluid/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,47 +25,71 @@ using LoDTensor = framework::LoDTensor;
template
<
typename
T
>
__global__
void
sequence_expand_kernel
(
const
T
*
x_data
,
T
*
out_data
,
const
size_t
*
lod
,
size_t
lod_size
,
size_t
element_len
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
static_cast
<
int
>
(
lod_size
-
1
);
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
tid_x
+
1
]
-
lod
[
tid_x
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
scale
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
int
tid_z
=
blockIdx
.
z
*
blockDim
.
z
+
threadIdx
.
z
;
int
item_start
=
tid_x
/
element_len
;
for
(;
tid_z
<
element_len
;
tid_z
+=
blockDim
.
z
*
gridDim
.
z
)
{
out_data
[
item_start
*
scale
+
tid_z
]
=
x_data
[
item_start
+
tid_z
];
}
const
size_t
*
lod
,
const
size_t
*
out_offset
,
size_t
lod_size
,
size_t
element_len
,
size_t
x_size
)
{
int
bid_x
=
blockIdx
.
x
;
if
(
bid_x
>
lod_size
)
return
;
int
repeats
=
lod
[
bid_x
];
int
offset
=
out_offset
[
bid_x
];
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
repeats
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
element_len
;
tid_x
+=
blockDim
.
x
)
{
out_data
[(
offset
+
tid_y
)
*
element_len
+
tid_x
]
=
x_data
[
bid_x
*
element_len
+
tid_x
];
}
}
}
template
<
typename
T
>
__global__
void
sequence_expand_grad_kernel
(
const
T
*
dout_data
,
T
*
dx_data
,
const
size_t
*
lod
,
size_t
lod_size
,
size_t
element_len
,
size_t
dout_size
)
{
const
size_t
*
lod
,
const
size_t
*
out_offset
,
size_t
lod_size
,
size_t
element_len
,
size_t
dout_size
,
size_t
dx_size
)
{
// reduce visit memory time.
// dout_shm = [0 - dout_size-1], dx_shm = [dout_size-1, dout_size + dx_size-1]
if
(
blockIdx
.
x
==
0
&&
blockIdx
.
y
==
0
&&
threadIdx
.
x
==
0
&&
threadIdx
.
y
==
0
)
{
printf
(
"lod_size=%ld, element_size=%ld, dout_size=%ld, dx_size=%ld
\n
"
,
lod_size
,
element_len
,
dout_size
,
dx_size
);
}
extern
__shared__
T
shm
[];
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
static_cast
<
int
>
(
lod_size
-
1
);
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
scale
=
lod
[
tid_x
+
1
]
-
lod
[
tid_x
];
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
scale
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
{
int
tid_z
=
blockIdx
.
z
*
blockDim
.
z
+
threadIdx
.
z
;
int
item_start
=
tid_x
/
element_len
;
for
(;
tid_z
<
element_len
;
tid_z
+=
blockDim
.
z
*
gridDim
.
z
)
{
shm
[
item_start
+
tid_z
]
+=
dout_data
[
item_start
*
scale
+
tid_z
];
}
T
*
dout_shm
=
shm
;
T
*
dx_shm
=
&
shm
[
dout_size
];
// int idx = threadIdx.x + blockIdx.x * blockDim.x;
for
(
int
idx
=
0
;
idx
<
dout_size
;
++
idx
)
{
if
(
idx
<
dx_size
)
{
dx_shm
[
idx
]
=
0.0
;
}
if
(
idx
<
dout_size
)
{
dout_shm
[
idx
]
=
dout_data
[
idx
];
}
}
int
bid_x
=
blockIdx
.
x
;
if
(
bid_x
>
lod_size
)
return
;
int
repeats
=
lod
[
bid_x
];
int
offset
=
out_offset
[
bid_x
];
if
(
threadIdx
.
x
==
0
)
{
printf
(
"repeats=%d, offset=%ld
\n
"
,
repeats
,
offset
);
}
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
repeats
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
element_len
;
tid_x
+=
blockDim
.
x
)
{
T
val
=
dout_shm
[(
offset
+
tid_y
)
*
element_len
+
tid_x
];
platform
::
CudaAtomicAdd
(
&
dx_shm
[
bid_x
*
element_len
+
tid_x
],
val
);
int
dx_idx
=
bid_x
*
element_len
+
tid_x
;
int
dout_idx
=
(
offset
+
tid_y
)
*
element_len
+
tid_x
;
printf
(
"dx_idx=%d, dout_idx=%d, dx_data=%f, dout_data=%f, val=%f
\n
"
,
dx_idx
,
dout_idx
,
dx_shm
[
dx_idx
],
dout_shm
[
dout_idx
],
val
);
}
}
// synchronize before write to dx
__syncthreads
();
for
(
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
idx
<
static_cast
<
int
>
(
dout_size
);
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dx_data
[
idx
]
=
shm
[
idx
];
// copy shared memory back to dx
for
(
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
idx
<
dx_size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dx_data
[
idx
]
=
dx_shm
[
idx
];
}
}
...
...
@@ -72,15 +99,20 @@ struct SequenceExpandFunctor<platform::CUDADeviceContext, T> {
const
LoDTensor
&
x
,
LoDTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_starts
=
out
->
lod
().
back
();
auto
lod
=
out
->
lod
().
back
();
framework
::
Vector
<
size_t
>
out_lod
;
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
out_lod
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
]);
}
dim3
block_size
(
16
,
32
,
element_len
);
dim3
grid_size
(
10
,
10
);
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
element_len
),
32
);
int
block_x
=
static_cast
<
int
>
(
out_lod
.
size
());
dim3
block_size
(
thread_x
,
1024
/
thread_x
);
dim3
grid_size
(
block_x
,
1
);
sequence_expand_kernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
x
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_
starts
.
CUDAData
(
context
.
GetPlace
()),
out_starts
.
size
(
),
element_len
);
out_
lod
.
CUDAData
(
context
.
GetPlace
()),
lod
.
CUDAData
(
context
.
GetPlace
()
),
out_lod
.
size
(),
element_len
,
framework
::
product
(
x_dims
)
);
}
};
...
...
@@ -91,16 +123,24 @@ struct SequenceExpandGradFunctor<platform::CUDADeviceContext, T> {
const
LoDTensor
&
dout
,
LoDTensor
*
dx
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
auto
out_starts
=
out
.
lod
().
back
();
auto
lod
=
out
.
lod
().
back
();
framework
::
Vector
<
size_t
>
out_lod
;
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
out_lod
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
]);
}
size_t
dout_size
=
framework
::
product
(
dout
.
dims
());
size_t
dx_size
=
framework
::
product
(
dx
->
dims
());
dim3
block_size
(
16
,
32
,
element_len
);
dim3
grid_size
(
10
,
10
);
size_t
out_size
=
framework
::
product
(
dx
->
dims
());
sequence_expand_grad_kernel
<<<
grid_size
,
block_size
,
out_size
*
sizeof
(
T
),
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
element_len
),
32
);
dim3
block_size
(
thread_x
,
1024
/
thread_x
);
int
block_x
=
static_cast
<
int
>
(
out_lod
.
size
());
dim3
grid_size
(
block_x
,
1
);
sequence_expand_grad_kernel
<<<
grid_size
,
block_size
,
(
dout_size
+
dx_size
)
*
sizeof
(
T
),
context
.
stream
()
>>>
(
dout
.
data
<
T
>
(),
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_
starts
.
CUDAData
(
context
.
GetPlace
()),
out_starts
.
size
(),
element_len
,
out_size
);
out_
lod
.
CUDAData
(
context
.
GetPlace
()),
lod
.
CUDAData
(
context
.
GetPlace
())
,
out_
lod
.
size
(),
element_len
,
dout_size
,
dx_
size
);
}
};
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
53c8c36a
...
...
@@ -362,6 +362,9 @@ class OpTest(unittest.TestCase):
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
np
.
abs
(
a
)
abs_a
[
abs_a
<
1e-3
]
=
1
print
(
"actual"
,
a
)
print
(
"*****"
)
print
(
"expected"
,
b
)
diff_mat
=
np
.
abs
(
a
-
b
)
/
abs_a
max_diff
=
np
.
max
(
diff_mat
)
...
...
python/paddle/fluid/tests/unittests/test_sequence_expand.py
浏览文件 @
53c8c36a
...
...
@@ -19,8 +19,14 @@ from op_test import OpTest
class
TestSequenceExpand
(
OpTest
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
1
]).
astype
(
'float32'
)
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
8
,
1
]).
astype
(
'float32'
)
x
=
[
i
/
10.0
for
i
in
range
(
3
)]
y
=
[
i
/
10.0
for
i
in
range
(
8
)]
x_data
=
np
.
array
(
x
).
reshape
(
3
,
1
).
astype
(
'float32'
)
y_data
=
np
.
array
(
y
).
reshape
(
8
,
1
).
astype
(
'float32'
)
print
(
x_data
)
print
(
y_data
)
# x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
# y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
y_lod
=
[[
0
,
1
,
4
,
8
]]
self
.
inputs
=
{
'X'
:
x_data
,
'Y'
:
(
y_data
,
y_lod
)}
...
...
@@ -45,47 +51,43 @@ class TestSequenceExpand(OpTest):
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSequenceExpandCase1
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
5
,
1
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
2
,
5
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
7
,
10
,
13
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
class
TestSequenceExpandCase2
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
2
,
2
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
2
,
2
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
class
TestSequenceExpandCase3
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
4
,
1
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
,
2
,
3
,
4
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
6
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
,
4
,
4
,
6
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
class
TestSequenceExpandCase4
(
TestSequenceExpand
):
def
set_data
(
self
):
x_data
=
np
.
array
(
[
0.1
,
0.3
,
0.2
,
0.15
,
0.25
,
0.2
,
0.15
,
0.25
,
0.1
,
0.3
]).
reshape
(
[
2
,
5
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
,
2
,
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
2
],
[
0
,
1
,
2
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
# class TestSequenceExpandCase1(TestSequenceExpand):
# def set_data(self):
# x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
# x_lod = [[0, 2, 5]]
# y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
# y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
# class TestSequenceExpandCase2(TestSequenceExpand):
# def set_data(self):
# x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
# x_lod = [[0, 1]]
# y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
# y_lod = [[0, 2]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
# class TestSequenceExpandCase3(TestSequenceExpand):
# def set_data(self):
# x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
# x_lod = [[0, 1, 2, 3, 4]]
# y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
# y_lod = [[0, 2, 4, 4, 6]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
# class TestSequenceExpandCase4(TestSequenceExpand):
# def set_data(self):
# x_data = np.array(
# [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3]).reshape(
# [2, 5]).astype('float32')
# x_lod = [[
# 0,
# 1,
# 2,
# ]]
# y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32')
# y_lod = [[0, 1, 2], [0, 1, 2]]
# self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录