未验证 提交 530fb7c4 编写于 作者: S Shuangchi He 提交者: GitHub

Fix some typos. (#5860)

* Fix some typos in *.md.

* Fix some typos in code.
上级 f06c9290
...@@ -232,9 +232,9 @@ paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \ ...@@ -232,9 +232,9 @@ paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \
| Paddle Lite | - | [C++](../../deploy/lite) | ✔︎ | | Paddle Lite | - | [C++](../../deploy/lite) | ✔︎ |
| Android Demo | - | [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo) | ✔︎ | | Android Demo | - | [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo) | ✔︎ |
| PaddleInference | [Python](../../deploy/python) | [C++](../../deploy/cpp) | ✔︎ | | PaddleInference | [Python](../../deploy/python) | [C++](../../deploy/cpp) | ✔︎ |
| ONNXRuntime | [Python](../../deploy/third_engine/demo_onnxruntime) | Comming soon | ✔︎ | | ONNXRuntime | [Python](../../deploy/third_engine/demo_onnxruntime) | Coming soon | ✔︎ |
| NCNN | Comming soon | [C++](../../deploy/third_engine/demo_ncnn) | ✘ | | NCNN | Coming soon | [C++](../../deploy/third_engine/demo_ncnn) | ✘ |
| MNN | Comming soon | [C++](../../deploy/third_engine/demo_mnn) | ✘ | | MNN | Coming soon | [C++](../../deploy/third_engine/demo_mnn) | ✘ |
......
...@@ -223,13 +223,13 @@ paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \ ...@@ -223,13 +223,13 @@ paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \
| Infer Engine | Python | C++ | Predict With Postprocess | | Infer Engine | Python | C++ | Predict With Postprocess |
| :-------- | :--------: | :---------------------: | :----------------: | | :-------- | :--------: | :---------------------: | :----------------: |
| OpenVINO | [Python](../../deploy/third_engine/demo_openvino/python) | [C++](../../deploy/third_engine/demo_openvino)(postprocess comming soon) | ✔︎ | | OpenVINO | [Python](../../deploy/third_engine/demo_openvino/python) | [C++](../../deploy/third_engine/demo_openvino)(postprocess coming soon) | ✔︎ |
| Paddle Lite | - | [C++](../../deploy/lite) | ✔︎ | | Paddle Lite | - | [C++](../../deploy/lite) | ✔︎ |
| Android Demo | - | [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo) | ✔︎ | | Android Demo | - | [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo) | ✔︎ |
| PaddleInference | [Python](../../deploy/python) | [C++](../../deploy/cpp) | ✔︎ | | PaddleInference | [Python](../../deploy/python) | [C++](../../deploy/cpp) | ✔︎ |
| ONNXRuntime | [Python](../../deploy/third_engine/demo_onnxruntime) | Comming soon | ✔︎ | | ONNXRuntime | [Python](../../deploy/third_engine/demo_onnxruntime) | Coming soon | ✔︎ |
| NCNN | Comming soon | [C++](../../deploy/third_engine/demo_ncnn) | ✘ | | NCNN | Coming soon | [C++](../../deploy/third_engine/demo_ncnn) | ✘ |
| MNN | Comming soon | [C++](../../deploy/third_engine/demo_mnn) | ✘ | | MNN | Coming soon | [C++](../../deploy/third_engine/demo_mnn) | ✘ |
Android demo visualization: Android demo visualization:
...@@ -277,7 +277,7 @@ python tools/train.py -c configs/picodet/picodet_s_416_coco_lcnet.yml \ ...@@ -277,7 +277,7 @@ python tools/train.py -c configs/picodet/picodet_s_416_coco_lcnet.yml \
## Unstructured Pruning ## Unstructured Pruning
<details open> <details open>
<summary>Toturial:</summary> <summary>Tutorial:</summary>
Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/legacy_model/pruner/README.md) for details such as requirements, training and deployment. Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet/legacy_model/pruner/README.md) for details such as requirements, training and deployment.
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
### 简介 ### 简介
* 近年来,学术界和工业界广泛关注图像中目标检测任务。基于[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为61FPS时,COCO mAP可达41.2%。 * 近年来,学术界和工业界广泛关注图像中目标检测任务。基于[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为61FPS时,COCO mAP可达41.2%。
### 模型库 ### 模型库
......
...@@ -116,7 +116,7 @@ class JDETracker(object): ...@@ -116,7 +116,7 @@ class JDETracker(object):
Return: Return:
output_stracks_dict (dict(list)): The list contains information output_stracks_dict (dict(list)): The list contains information
regarding the online_tracklets for the recieved image tensor. regarding the online_tracklets for the received image tensor.
""" """
self.frame_id += 1 self.frame_id += 1
if self.frame_id == 1: if self.frame_id == 1:
......
...@@ -35,7 +35,7 @@ class HrHRNetPostProcess(object): ...@@ -35,7 +35,7 @@ class HrHRNetPostProcess(object):
heat_thresh (float): value of topk below this threshhold will be ignored heat_thresh (float): value of topk below this threshhold will be ignored
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
original_height, original_width (float): the original image size original_height, original_width (float): the original image size
""" """
......
...@@ -59,7 +59,7 @@ TrainReader: ...@@ -59,7 +59,7 @@ TrainReader:
- Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]}
# 训练时batch_size # 训练时batch_size
batch_size: 24 batch_size: 24
# 读取数据是否乱序 # 读取数据是否乱序
shuffle: true shuffle: true
# 是否丢弃最后不能完整组成batch的数据 # 是否丢弃最后不能完整组成batch的数据
drop_last: true drop_last: true
......
...@@ -90,7 +90,7 @@ TrainReader: ...@@ -90,7 +90,7 @@ TrainReader:
- PadBatch: {pad_to_stride: 32} - PadBatch: {pad_to_stride: 32}
# 训练时batch_size # 训练时batch_size
batch_size: 1 batch_size: 1
# 读取数据是否乱序 # 读取数据是否乱序
shuffle: true shuffle: true
# 是否丢弃最后不能完整组成batch的数据 # 是否丢弃最后不能完整组成batch的数据
drop_last: true drop_last: true
...@@ -110,7 +110,7 @@ EvalReader: ...@@ -110,7 +110,7 @@ EvalReader:
- PadBatch: {pad_to_stride: 32} - PadBatch: {pad_to_stride: 32}
# 评估时batch_size # 评估时batch_size
batch_size: 1 batch_size: 1
# 读取数据是否乱序 # 读取数据是否乱序
shuffle: false shuffle: false
# 是否丢弃最后不能完整组成batch的数据 # 是否丢弃最后不能完整组成batch的数据
drop_last: false drop_last: false
...@@ -130,7 +130,7 @@ TestReader: ...@@ -130,7 +130,7 @@ TestReader:
- PadBatch: {pad_to_stride: 32} - PadBatch: {pad_to_stride: 32}
# 测试时batch_size # 测试时batch_size
batch_size: 1 batch_size: 1
# 读取数据是否乱序 # 读取数据是否乱序
shuffle: false shuffle: false
# 是否丢弃最后不能完整组成batch的数据 # 是否丢弃最后不能完整组成batch的数据
drop_last: false drop_last: false
......
...@@ -102,7 +102,7 @@ TrainReader: ...@@ -102,7 +102,7 @@ TrainReader:
- Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]}
# 训练时batch_size # 训练时batch_size
batch_size: 24 batch_size: 24
# 读取数据是否乱序 # 读取数据是否乱序
shuffle: true shuffle: true
# 是否丢弃最后不能完整组成batch的数据 # 是否丢弃最后不能完整组成batch的数据
drop_last: true drop_last: true
......
...@@ -529,7 +529,7 @@ class Gt2FairMOTTarget(Gt2TTFTarget): ...@@ -529,7 +529,7 @@ class Gt2FairMOTTarget(Gt2TTFTarget):
Generate FairMOT targets by ground truth data. Generate FairMOT targets by ground truth data.
Difference between Gt2FairMOTTarget and Gt2TTFTarget are: Difference between Gt2FairMOTTarget and Gt2TTFTarget are:
1. the gaussian kernal radius to generate a heatmap. 1. the gaussian kernal radius to generate a heatmap.
2. the targets needed during traing. 2. the targets needed during training.
Args: Args:
num_classes(int): the number of classes. num_classes(int): the number of classes.
......
...@@ -1054,7 +1054,7 @@ class CropWithSampling(BaseOperator): ...@@ -1054,7 +1054,7 @@ class CropWithSampling(BaseOperator):
[max sample, max trial, min scale, max scale, [max sample, max trial, min scale, max scale,
min aspect ratio, max aspect ratio, min aspect ratio, max aspect ratio,
min overlap, max overlap] min overlap, max overlap]
avoid_no_bbox (bool): whether to to avoid the avoid_no_bbox (bool): whether to avoid the
situation where the box does not appear. situation where the box does not appear.
""" """
super(CropWithSampling, self).__init__() super(CropWithSampling, self).__init__()
...@@ -1145,7 +1145,7 @@ class CropWithDataAchorSampling(BaseOperator): ...@@ -1145,7 +1145,7 @@ class CropWithDataAchorSampling(BaseOperator):
das_anchor_scales (list[float]): a list of anchor scales in data das_anchor_scales (list[float]): a list of anchor scales in data
anchor smapling. anchor smapling.
min_size (float): minimum size of sampled bbox. min_size (float): minimum size of sampled bbox.
avoid_no_bbox (bool): whether to to avoid the avoid_no_bbox (bool): whether to avoid the
situation where the box does not appear. situation where the box does not appear.
""" """
super(CropWithDataAchorSampling, self).__init__() super(CropWithDataAchorSampling, self).__init__()
......
...@@ -557,7 +557,7 @@ class KITTIEvaluation(object): ...@@ -557,7 +557,7 @@ class KITTIEvaluation(object):
"track ids are not unique for sequence %d: frame %d" "track ids are not unique for sequence %d: frame %d"
% (seq, t_data.frame)) % (seq, t_data.frame))
logger.info( logger.info(
"track id %d occured at least twice for this frame" "track id %d occurred at least twice for this frame"
% t_data.track_id) % t_data.track_id)
logger.info("Exiting...") logger.info("Exiting...")
#continue # this allows to evaluate non-unique result files #continue # this allows to evaluate non-unique result files
......
...@@ -153,7 +153,7 @@ class HrHRNetPostProcess(object): ...@@ -153,7 +153,7 @@ class HrHRNetPostProcess(object):
heat_thresh (float): value of topk below this threshhold will be ignored heat_thresh (float): value of topk below this threshhold will be ignored
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk inputs(list[heatmap]): the output list of model, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
original_height, original_width (float): the original image size original_height, original_width (float): the original image size
''' '''
......
...@@ -198,7 +198,7 @@ class SparseRCNNLoss(nn.Layer): ...@@ -198,7 +198,7 @@ class SparseRCNNLoss(nn.Layer):
# Retrieve the matching between the outputs of the last layer and the targets # Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets) indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes # Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = sum(len(t["labels"]) for t in targets)
num_boxes = paddle.to_tensor( num_boxes = paddle.to_tensor(
[num_boxes], [num_boxes],
......
...@@ -122,7 +122,7 @@ class JDETracker(object): ...@@ -122,7 +122,7 @@ class JDETracker(object):
Return: Return:
output_stracks_dict (dict(list)): The list contains information output_stracks_dict (dict(list)): The list contains information
regarding the online_tracklets for the recieved image tensor. regarding the online_tracklets for the received image tensor.
""" """
self.frame_id += 1 self.frame_id += 1
if self.frame_id == 1: if self.frame_id == 1:
......
...@@ -280,7 +280,7 @@ def roi_align(input, ...@@ -280,7 +280,7 @@ def roi_align(input,
rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32') rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32')
align_out = ops.roi_align(input=x, align_out = ops.roi_align(input=x,
rois=rois, rois=rois,
ouput_size=(7, 7), output_size=(7, 7),
spatial_scale=0.5, spatial_scale=0.5,
sampling_ratio=-1, sampling_ratio=-1,
rois_num=rois_num) rois_num=rois_num)
......
...@@ -28,7 +28,7 @@ PaddleDetection也开源了基于faster rcnn的GIOU loss实现。使用GIOU loss ...@@ -28,7 +28,7 @@ PaddleDetection也开源了基于faster rcnn的GIOU loss实现。使用GIOU loss
GIOU loss解决了IOU loss中预测边框A与真值B的交并比为0时,模型无法给出优化方向的问题,但是仍然有2种情况难以解决, GIOU loss解决了IOU loss中预测边框A与真值B的交并比为0时,模型无法给出优化方向的问题,但是仍然有2种情况难以解决,
1. 当边框A和边框B处于包含关系的时候,GIOU loss退化为IOU loss,此时模型收敛较慢。 1. 当边框A和边框B处于包含关系的时候,GIOU loss退化为IOU loss,此时模型收敛较慢。
2. 当A与B相交,若A和B的x1与x2均相等或者y1与y2均相等,GIOU loss仍然会退化为IOU loss,收敛很慢。 2. 当A与B相交,若A和B的x1与x2均相等或者y1与y2均相等,GIOU loss仍然会退化为IOU loss,收敛很慢。
基于此,论文提出了DIOU loss与CIOU loss,解决收敛速度慢以及部分条件下无法收敛的问题。 基于此,论文提出了DIOU loss与CIOU loss,解决收敛速度慢以及部分条件下无法收敛的问题。
为加速收敛,论文在改进的loss中引入距离的概念,具体地,边框loss可以定义为如下形式: 为加速收敛,论文在改进的loss中引入距离的概念,具体地,边框loss可以定义为如下形式:
......
...@@ -90,7 +90,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me ...@@ -90,7 +90,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
|:----------------------------:|:----------:|:----------:| :---------: | :-----------------------: | :--------: | :----------:| :------------------: | :-------------------: | :------: | :----------------------: | :-----: | |:----------------------------:|:----------:|:----------:| :---------: | :-----------------------: | :--------: | :----------:| :------------------: | :-------------------: | :------: | :----------------------: | :-----: |
| PP-YOLO_MobileNetV3_small | 4 | 32 | 75% | PP-YOLO_MobileNetV3_large | 4.2MB | 320 | 16.2 | 39.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/configs/ppyolo/ppyolo_mobilenet_v3_small.yml) | | PP-YOLO_MobileNetV3_small | 4 | 32 | 75% | PP-YOLO_MobileNetV3_large | 4.2MB | 320 | 16.2 | 39.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/configs/ppyolo/ppyolo_mobilenet_v3_small.yml) |
- Slim PP-YOLO is trained by slim traing method from [Distill pruned model](../../slim/extensions/distill_pruned_model/README.md),distill training pruned PP-YOLO_MobileNetV3_small model with PP-YOLO_MobileNetV3_large model as the teacher model - Slim PP-YOLO is trained by slim training method from [Distill pruned model](../../slim/extensions/distill_pruned_model/README.md),distill training pruned PP-YOLO_MobileNetV3_small model with PP-YOLO_MobileNetV3_large model as the teacher model
- Pruning detectiom head of PP-YOLO model with ratio as 75%, while the arguments are `--pruned_params="yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights" --pruned_ratios="0.75,0.75,0.75,0.75"` - Pruning detectiom head of PP-YOLO model with ratio as 75%, while the arguments are `--pruned_params="yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights" --pruned_ratios="0.75,0.75,0.75,0.75"`
- For Slim PP-YOLO training, evaluation, inference and model exporting, please see [Distill pruned model](../../slim/extensions/distill_pruned_model/README.md) - For Slim PP-YOLO training, evaluation, inference and model exporting, please see [Distill pruned model](../../slim/extensions/distill_pruned_model/README.md)
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
### 简介 ### 简介
* 近年来,学术界和工业界广泛关注图像中目标检测任务。基于[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为61FPS时,COCO mAP可达41.6%;预测速度为20FPS时,COCO mAP可达47.8%。 * 近年来,学术界和工业界广泛关注图像中目标检测任务。基于[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)中SSLD蒸馏方案训练得到的ResNet50_vd预训练模型(ImageNet1k验证集上Top1 Acc为82.39%),结合PaddleDetection中的丰富算子,飞桨提供了一种面向服务器端实用的目标检测方案PSS-DET(Practical Server Side Detection)。基于COCO2017目标检测数据集,V100单卡预测速度为61FPS时,COCO mAP可达41.6%;预测速度为20FPS时,COCO mAP可达47.8%。
* 以标准的Faster RCNN ResNet50_vd FPN为例,下表给出了PSS-DET不同的模块的速度与精度收益。 * 以标准的Faster RCNN ResNet50_vd FPN为例,下表给出了PSS-DET不同的模块的速度与精度收益。
......
...@@ -65,7 +65,7 @@ def archives = [ ...@@ -65,7 +65,7 @@ def archives = [
'src' : 'https://paddlelite-demo.bj.bcebos.com/models/yolov3_mobilenet_v3_prune86_FPGM_320_fp32_for_hybrid_cpu_npu_v2_6_1.tar.gz', 'src' : 'https://paddlelite-demo.bj.bcebos.com/models/yolov3_mobilenet_v3_prune86_FPGM_320_fp32_for_hybrid_cpu_npu_v2_6_1.tar.gz',
'dest' : 'src/main/assets/models/yolov3_mobilenet_v3_for_hybrid_cpu_npu' 'dest' : 'src/main/assets/models/yolov3_mobilenet_v3_for_hybrid_cpu_npu'
], ],
// pp-yolo tiny comming soon // pp-yolo tiny coming soon
// ssd_mobilenet_v1 voc // ssd_mobilenet_v1 voc
[ [
'src' : 'https://paddlelite-demo.bj.bcebos.com/models/ssdlite_mobilenet_v3_large_for_cpu_nb.tar.gz', 'src' : 'https://paddlelite-demo.bj.bcebos.com/models/ssdlite_mobilenet_v3_large_for_cpu_nb.tar.gz',
......
...@@ -955,7 +955,7 @@ class CropImage(BaseOperator): ...@@ -955,7 +955,7 @@ class CropImage(BaseOperator):
[max sample, max trial, min scale, max scale, [max sample, max trial, min scale, max scale,
min aspect ratio, max aspect ratio, min aspect ratio, max aspect ratio,
min overlap, max overlap] min overlap, max overlap]
avoid_no_bbox (bool): whether to to avoid the avoid_no_bbox (bool): whether to avoid the
situation where the box does not appear. situation where the box does not appear.
""" """
super(CropImage, self).__init__() super(CropImage, self).__init__()
...@@ -1047,7 +1047,7 @@ class CropImageWithDataAchorSampling(BaseOperator): ...@@ -1047,7 +1047,7 @@ class CropImageWithDataAchorSampling(BaseOperator):
das_anchor_scales (list[float]): a list of anchor scales in data das_anchor_scales (list[float]): a list of anchor scales in data
anchor smapling. anchor smapling.
min_size (float): minimum size of sampled bbox. min_size (float): minimum size of sampled bbox.
avoid_no_bbox (bool): whether to to avoid the avoid_no_bbox (bool): whether to avoid the
situation where the box does not appear. situation where the box does not appear.
""" """
super(CropImageWithDataAchorSampling, self).__init__() super(CropImageWithDataAchorSampling, self).__init__()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册