提交 52f2366d 编写于 作者: W wanghaox

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into my_maxout_op

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_slice_op.h"
namespace paddle {
namespace operators {
class SequenceSliceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequenceSliceOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Offset"),
"Input(Offset) of SequenceSliceOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Length"),
"Input(Length) of SequenceSliceOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceSliceOp should not be null.");
auto input_dims = ctx->GetInputDim("X");
auto offset_dim = ctx->GetInputDim("Offset");
auto length_dim = ctx->GetInputDim("Length");
PADDLE_ENFORCE_EQ(
offset_dim.size(), 2UL,
"Only support one level sequence now, The rank of offset must be 2.");
PADDLE_ENFORCE_EQ(
length_dim.size(), 2UL,
"Only support one level sequence now, The rank of Length must be 2.");
// Initialize the output's dims to maximum,
// and re-set to real dims by the value of Offset and Length at kernel
ctx->SetOutputDim("Out", input_dims);
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
class SequenceSliceGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"The gradient of Out should not be null.");
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
"The gradient of X should not be null.");
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceSliceOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(LoDTensor), "
"the input of SequenceSliceOp.");
AddInput("Offset",
"(Tensor), "
"a vector<int> to describe the offset of every input sequence for "
"sub sequence item.");
AddInput("Length",
"(Tensor), "
"a vector<int> to describe the length of every input sequence for "
"sub sequence item.");
AddOutput("Out",
"(LoDTensor), the output of SequenceSliceOp.");
AddComment(R"DOC(
Sequence slice operator
The operator crops a subsequence from given sequence with given start offset and subsequence length.
It only supports sequence (LoD Tensor with level number is 1).
- Case:
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2;
e1, e2]]
LoD(X) = {{0, 3, 5}}; Dims(X) = (5, 2)
Offset = [[0], [1]]; Length = [[2], [1]]
Out = [[a1, a2;
b1, b2]
[e1, e2]]
LoD(Out) = {{0, 2, 3}}; Dims(Out) = (3, 2)
NOTE: The first dimension size of input, the size of offset and Length, should be equal. The offset start from 0.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sequence_slice, ops::SequenceSliceOp, ops::SequenceSliceOpMaker,
sequence_slice_grad, ops::SequenceSliceGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_slice,
ops::SequenceSliceOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
sequence_slice_grad,
ops::SequenceSliceGradOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_slice_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
sequence_slice,
ops::SequenceSliceOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
sequence_slice_grad,
ops::SequenceSliceGradOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/strided_memcpy.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
template <typename T>
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
const int64_t* length_data) {
auto out_lod = in.lod();
size_t lod_offset = 0;
auto n = in.lod()[0].size() - 1;
out_lod[0][0] = 0;
for (size_t i = 0; i < n; ++i) {
lod_offset += length_data[i];
out_lod[0][i+1] = lod_offset;
}
return out_lod;
}
template <typename Place, typename T>
class SequenceSliceOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<LoDTensor>("X");
auto* offset = ctx.Input<Tensor>("Offset");
auto* length = ctx.Input<Tensor>("Length");
auto* out = ctx.Output<LoDTensor>("Out");
auto lod = in->lod();
auto n = lod[0].size() - 1;
PADDLE_ENFORCE_EQ(lod.size(), 1UL,
"Only support one level sequence now.");
PADDLE_ENFORCE_EQ(
n, static_cast<size_t>(length->dims()[0]),
"The size of input-sequence and length-array should be the same")
PADDLE_ENFORCE_EQ(
n, static_cast<size_t>(offset->dims()[0]),
"The size of input-sequence and offset-array should be the same")
const int64_t* offset_data = offset->data<int64_t>();
const int64_t* length_data = length->data<int64_t>();
framework::Tensor offset_cpu;
framework::Tensor length_cpu;
if (platform::is_gpu_place(ctx.GetPlace())) {
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
offset_data = offset_cpu.data<int64_t>();
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
length_data = length_cpu.data<int64_t>();
}
for (size_t i = 0; i < n; ++i) {
PADDLE_ENFORCE_LT(0, offset_data[i],
"The offset[%d] must greater than zero.", i)
PADDLE_ENFORCE_LT(0, length_data[i],
"The length[%d] must greater than zero.", i)
PADDLE_ENFORCE_LT(
lod[0][i] + offset_data[i] + length_data[i],
lod[0][i + 1],
"The target tensor's length overflow.")
}
out->mutable_data<T>(ctx.GetPlace());
auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
auto out_dims = in->dims();
out_dims[0] = out_lod[0][out_lod[0].size() - 1];
out->Resize(out_dims);
out->set_lod(out_lod);
auto in_stride = framework::stride(in->dims());
auto out_stride = framework::stride(out->dims());
size_t out_offset = 0;
for (size_t i = 0; i < n; ++i) {
Tensor in_t =
in->Slice(static_cast<int>(lod[0][i] + offset_data[i]),
static_cast<int>(lod[0][i] + offset_data[i] +
length_data[i]));
StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(),
in_stride, in_t.dims(), out_stride,
out->data<T>() + out_offset);
out_offset += length_data[i] * in_stride[0];
}
}
};
template <typename Place, typename T>
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<LoDTensor>("X");
auto* offset = ctx.Input<Tensor>("Offset");
auto* length = ctx.Input<Tensor>("Length");
auto* out_grad =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto* x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
const int64_t* offset_data = offset->data<int64_t>();
const int64_t* length_data = length->data<int64_t>();
framework::Tensor offset_cpu;
framework::Tensor length_cpu;
if (platform::is_gpu_place(ctx.GetPlace())) {
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
offset_data = offset_cpu.data<int64_t>();
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
length_data = length_cpu.data<int64_t>();
}
auto lod = in->lod();
auto out_lod = out_grad->lod();
if (x_grad) {
x_grad->mutable_data<T>(ctx.GetPlace());
x_grad->set_lod(in->lod());
math::SetConstant<Place, T> set_zero;
set_zero(ctx.device_context(), x_grad, static_cast<T>(0));
auto out_grad_stride = framework::stride(out_grad->dims());
for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
Tensor out_grad_t =
out_grad->Slice(static_cast<int>(out_lod[0][i]),
static_cast<int>(out_lod[0][i + 1]));
auto out_grad_stride = framework::stride(out_grad_t.dims());
auto x_grad_stride = framework::stride(x_grad->dims());
Tensor x_grad_t = x_grad->Slice(
static_cast<int>(lod[0][i] + offset_data[i]),
static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
out_grad_stride, out_grad_t.dims(), x_grad_stride,
x_grad_t.data<T>());
}
}
}
};
} // namespace operators
} // namespace paddle
...@@ -11,7 +11,6 @@ test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_l ...@@ -11,7 +11,6 @@ test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_l
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_roi_pool_layer test_pooling3D_layer test_seq_slice_layer test_cross_entropy_over_beam test_roi_pool_layer test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer) test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer)
export whole_configs=(test_split_datasource) export whole_configs=(test_split_datasource)
import unittest
import numpy as np
import sys
from op_test import OpTest
class TestSequenceSliceOp(OpTest):
def set_data(self):
self.init_test_case()
# only supprot one level LoD
x = np.random.random(self.x_dim).astype('float32')
lod = self.x_lod
offset = np.array(self.offset).astype("int64")
length = np.array(self.length).astype("int64")
self.inputs = {'X': (x, lod), 'Offset': offset, 'Length': length}
outs = [] #np.zeros((100, 3, 2)).astype('float32')
out_lod = [[0]]
out_lod_offset = 0
for i in range(len(offset)):
sub_x = x[lod[0][i] + offset[i, 0]: lod[0]
[i] + offset[i, 0] + length[i, 0], :]
out_lod_offset = out_lod_offset + len(sub_x)
outs.append(sub_x)
out_lod[0].append(out_lod_offset)
outs = np.concatenate(outs, axis=0)
self.outputs = {'Out': (outs, out_lod)}
def init_test_case(self):
self.x_dim = (100, 3, 2)
self.x_lod = [[0, 20, 40, 60, 80, 100]]
self.offset = [[1], [2], [3], [4], [5]]
self.length = [[10], [8], [6], [4], [2]]
def setUp(self):
self.op_type = "sequence_slice"
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册