Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
529f24c2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
529f24c2
编写于
12月 12, 2016
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cpu cmrnorm
上级
b3f0f3d2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
279 addition
and
168 deletion
+279
-168
paddle/cuda/src/hl_cuda_cnn.cu
paddle/cuda/src/hl_cuda_cnn.cu
+77
-115
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+1
-2
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+86
-51
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+115
-0
未找到文件。
paddle/cuda/src/hl_cuda_cnn.cu
浏览文件 @
529f24c2
...
...
@@ -381,57 +381,45 @@ void hl_avgpool_backward(const int frameCnt, const real* outGrad,
CHECK_SYNC
(
"hl_avgpool_backward failed"
);
}
__global__
void
KeCMRNormFillScale
(
size_t
nthreads
,
const
real
*
in
,
__global__
void
KeCMRNormFillScale
(
size_t
imageSize
,
const
real
*
in
,
real
*
scale
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
alpha
)
{
size_t
index
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
index
<
nthreads
)
{
// find out the local offset
size_t
w
=
index
%
width
;
size_t
h
=
(
index
/
width
)
%
height
;
size_t
n
=
index
/
width
/
height
;
size_t
offset
=
(
n
*
channels
*
height
+
h
)
*
width
+
w
;
size_t
step
=
height
*
width
;
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
imageSize
)
{
const
int
w
=
idx
%
width
;
const
int
h
=
(
idx
/
width
)
%
height
;
const
int
n
=
idx
/
width
/
height
;
const
int
offset
=
(
n
*
channels
*
height
+
h
)
*
width
+
w
;
in
+=
offset
;
scale
+=
offset
;
size_t
head
=
0
;
size_t
pre_pad
=
(
size
-
1
)
/
2
;
size_t
post_pad
=
size
-
pre_pad
-
1
;
real
accum_scale
=
0
;
// fill the scale at [n, :, h, w]
// accumulate values
while
(
head
<
post_pad
)
{
accum_scale
+=
in
[
head
*
step
]
*
in
[
head
*
step
];
++
head
;
}
// until we reach size, nothing needs to be subtracted
while
(
head
<
size
)
{
accum_scale
+=
in
[
head
*
step
]
*
in
[
head
*
step
];
scale
[(
head
-
post_pad
)
*
step
]
=
1.
+
accum_scale
*
alpha
;
++
head
;
}
// both add and subtract
while
(
head
<
channels
)
{
accum_scale
+=
in
[
head
*
step
]
*
in
[
head
*
step
];
accum_scale
-=
in
[(
head
-
size
)
*
step
]
*
in
[(
head
-
size
)
*
step
];
scale
[(
head
-
post_pad
)
*
step
]
=
1.
+
accum_scale
*
alpha
;
++
head
;
}
// subtract only
while
(
head
<
channels
+
post_pad
)
{
accum_scale
-=
in
[(
head
-
size
)
*
step
]
*
in
[(
head
-
size
)
*
step
];
scale
[(
head
-
post_pad
)
*
step
]
=
1.
+
accum_scale
*
alpha
;
++
head
;
const
int
step
=
height
*
width
;
const
int
pre_pad
=
(
size
-
1
)
/
2
;
const
int
post_pad
=
size
-
pre_pad
-
1
;
real
accum
=
0
;
int
index
=
0
;
while
(
index
<
channels
+
post_pad
)
{
if
(
index
<
channels
)
{
accum
+=
in
[
index
*
step
]
*
in
[
index
*
step
];
}
if
(
index
>=
size
)
{
accum
-=
in
[(
index
-
size
)
*
step
]
*
in
[(
index
-
size
)
*
step
];
}
if
(
index
>=
post_pad
)
{
scale
[(
index
-
post_pad
)
*
step
]
=
1.
+
accum
*
alpha
;
}
++
index
;
}
}
}
__global__
void
KeCMRNormOutput
(
size_t
nthreads
,
const
real
*
in
,
const
real
*
scale
,
real
negative_beta
,
real
*
out
)
{
size_
t
index
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
index
<
nthreads
)
{
__global__
void
KeCMRNormOutput
(
size_t
inputSize
,
const
real
*
in
,
const
real
*
scale
,
real
negative_beta
,
real
*
out
)
{
const
in
t
index
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
index
<
inputSize
)
{
out
[
index
]
=
in
[
index
]
*
pow
(
scale
[
index
],
negative_beta
);
}
}
...
...
@@ -440,84 +428,60 @@ void hl_CMRNorm_forward(size_t frameCnt, const real* in, real* scale,
real
*
out
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{
size_t
threadsNum
=
frameCnt
*
height
*
width
;
size_t
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
size_t
blocksY
=
1
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocksX
,
blocksY
);
KeCMRNormFillScale
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
threadsNum
,
in
,
scale
,
channels
,
height
,
width
,
sizeX
,
alpha
);
threadsNum
=
frameCnt
*
height
*
width
*
channels
;
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
dim3
threads2
(
1024
,
1
);
dim3
grid2
(
blocksX
,
blocksY
);
KeCMRNormOutput
<<<
grid2
,
threads2
,
0
,
STREAM_DEFAULT
>>>
(
threadsNum
,
in
,
scale
,
beta
,
out
);
size_t
imageSize
=
frameCnt
*
height
*
width
;
int
blockSize
=
1024
;
int
gridSize
=
(
imageSize
+
1024
-
1
)
/
1024
;
KeCMRNormFillScale
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
imageSize
,
in
,
scale
,
channels
,
height
,
width
,
sizeX
,
alpha
);
size_t
inputSize
=
frameCnt
*
height
*
width
*
channels
;
blockSize
=
1024
;
gridSize
=
(
inputSize
+
1024
-
1
)
/
1024
;
KeCMRNormOutput
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
inputSize
,
in
,
scale
,
beta
,
out
);
CHECK_SYNC
(
"hl_CMRNorm_forward"
);
}
__global__
void
KeCMRNormDiff
(
size_t
nthreads
,
const
real
*
bottom_data
,
__global__
void
KeCMRNormDiff
(
size_t
imageSize
,
const
real
*
bottom_data
,
const
real
*
top_data
,
const
real
*
scale
,
const
real
*
top_diff
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
size
,
real
negative_beta
,
real
cache_ratio
,
real
*
bottom_diff
)
{
int
index
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
index
<
nthreads
)
{
// find out the local offset
size_t
w
=
index
%
width
;
size_t
h
=
(
index
/
width
)
%
height
;
size_t
n
=
index
/
width
/
height
;
size_t
offset
=
(
n
*
channels
*
height
+
h
)
*
width
+
w
;
size_t
step
=
height
*
width
;
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
imageSize
)
{
const
int
w
=
idx
%
width
;
const
int
h
=
(
idx
/
width
)
%
height
;
const
int
n
=
idx
/
width
/
height
;
const
int
offset
=
(
n
*
channels
*
height
+
h
)
*
width
+
w
;
bottom_data
+=
offset
;
top_data
+=
offset
;
scale
+=
offset
;
top_diff
+=
offset
;
bottom_diff
+=
offset
;
int
head
=
0
;
int
pre_pad
=
size
-
(
size
+
1
)
/
2
;
int
post_pad
=
size
-
pre_pad
-
1
;
real
accum_ratio
=
0
;
// accumulate values
while
(
head
<
post_pad
)
{
accum_ratio
+=
top_diff
[
head
*
step
]
*
top_data
[
head
*
step
]
/
scale
[
head
*
step
];
++
head
;
}
// until we reach size, nothing needs to be subtracted
while
(
head
<
size
)
{
accum_ratio
+=
top_diff
[
head
*
step
]
*
top_data
[
head
*
step
]
/
scale
[
head
*
step
];
bottom_diff
[(
head
-
post_pad
)
*
step
]
+=
top_diff
[(
head
-
post_pad
)
*
step
]
*
pow
(
scale
[(
head
-
post_pad
)
*
step
],
negative_beta
)
-
cache_ratio
*
bottom_data
[(
head
-
post_pad
)
*
step
]
*
accum_ratio
;
++
head
;
}
// both add and subtract
while
(
head
<
channels
)
{
accum_ratio
+=
top_diff
[
head
*
step
]
*
top_data
[
head
*
step
]
/
scale
[
head
*
step
];
accum_ratio
-=
top_diff
[(
head
-
size
)
*
step
]
*
top_data
[(
head
-
size
)
*
step
]
/
scale
[(
head
-
size
)
*
step
];
bottom_diff
[(
head
-
post_pad
)
*
step
]
+=
top_diff
[(
head
-
post_pad
)
*
step
]
*
pow
(
scale
[(
head
-
post_pad
)
*
step
],
negative_beta
)
-
cache_ratio
*
bottom_data
[(
head
-
post_pad
)
*
step
]
*
accum_ratio
;
++
head
;
}
// subtract only
while
(
head
<
channels
+
post_pad
)
{
accum_ratio
-=
top_diff
[(
head
-
size
)
*
step
]
*
top_data
[(
head
-
size
)
*
step
]
/
scale
[(
head
-
size
)
*
step
];
bottom_diff
[(
head
-
post_pad
)
*
step
]
+=
top_diff
[(
head
-
post_pad
)
*
step
]
*
pow
(
scale
[(
head
-
post_pad
)
*
step
],
negative_beta
)
-
cache_ratio
*
bottom_data
[(
head
-
post_pad
)
*
step
]
*
accum_ratio
;
++
head
;
const
int
step
=
height
*
width
;
const
int
pre_pad
=
size
-
(
size
+
1
)
/
2
;
const
int
post_pad
=
size
-
pre_pad
-
1
;
int
index
=
0
;
real
accum
=
0
;
while
(
index
<
channels
+
post_pad
)
{
if
(
index
<
channels
)
{
accum
+=
top_diff
[
index
*
step
]
*
top_data
[
index
*
step
]
/
scale
[
index
*
step
];
}
if
(
index
>=
size
)
{
accum
-=
top_diff
[(
index
-
size
)
*
step
]
*
top_data
[(
index
-
size
)
*
step
]
/
scale
[(
index
-
size
)
*
step
];
}
if
(
index
>=
post_pad
)
{
bottom_diff
[(
index
-
post_pad
)
*
step
]
+=
top_diff
[(
index
-
post_pad
)
*
step
]
*
pow
(
scale
[(
index
-
post_pad
)
*
step
],
negative_beta
)
-
cache_ratio
*
bottom_data
[(
index
-
post_pad
)
*
step
]
*
accum
;
}
++
index
;
}
}
}
...
...
@@ -528,14 +492,12 @@ void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
real
*
inDiff
,
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{
size_t
threadsNum
=
frameCnt
*
height
*
width
;
size_t
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
size_t
blocksY
=
1
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocksX
,
blocksY
);
KeCMRNormDiff
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
threadsNum
,
inV
,
outV
,
scale
,
outDiff
,
channels
,
height
,
width
,
sizeX
,
alpha
,
beta
,
inDiff
);
size_t
imageSize
=
frameCnt
*
height
*
width
;
int
blockSize
=
1024
;
int
gridSize
=
(
imageSize
+
1024
-
1
)
/
1024
;
KeCMRNormDiff
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
imageSize
,
inV
,
outV
,
scale
,
outDiff
,
channels
,
height
,
width
,
sizeX
,
alpha
,
beta
,
inDiff
);
CHECK_SYNC
(
"hl_CMRNorm_backward"
);
}
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
529f24c2
...
...
@@ -1021,11 +1021,10 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
testLayerGrad
(
config
,
"norm"
,
100
,
trans
,
useGpu
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Layer
,
NormLayer
)
{
testNormLayer
(
"cmrnorm-projection"
,
/* trans= */
false
,
/* useGpu= */
true
);
testNormLayer
(
"cmrnorm-projection"
,
/* trans= */
false
,
/* useGpu= */
false
);
}
#endif
void
setPoolConfig
(
TestConfig
*
config
,
PoolConfig
*
pool
,
...
...
paddle/math/Matrix.cpp
浏览文件 @
529f24c2
...
...
@@ -2227,52 +2227,43 @@ void CpuMatrix::crossMapNormalFwd(Matrix& input,
size_t
sizeX
,
float
scale
,
float
pow
)
{
size_t
num
=
input
.
getHeight
();
CHECK
(
isContiguous
());
CHECK
(
input
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK_EQ
(
getHeight
(),
input
.
getHeight
());
CHECK_EQ
(
getWidth
(),
input
.
getWidth
());
CHECK_EQ
(
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
getWidth
(),
denoms
.
getWidth
());
size_t
numSample
=
input
.
getHeight
();
size_t
numCols
=
input
.
getWidth
();
size_t
height
=
imgSizeH
;
size_t
width
=
imgSizeW
;
size_t
numCols
=
input
.
getWidth
();
CHECK
(
height
*
width
*
channels
==
input
.
getWidth
());
CHECK
(
denoms
.
getHeight
()
==
input
.
getHeight
()
&&
denoms
.
getWidth
()
==
input
.
getWidth
()
&&
input
.
getHeight
()
==
height_
&&
input
.
getWidth
()
==
width_
);
real
*
imgData
=
input
.
getData
();
real
*
diffData
=
input
.
getData
();
real
*
targetData
=
getData
();
size_t
halfSize
=
sizeX
/
2
;
size_t
imgPixels
=
height
*
width
;
// use integral vector to implement the sum in local window
real
*
integralData
=
(
real
*
)
malloc
((
channels
+
sizeX
+
1
)
*
sizeof
(
real
));
// NOLINT // TODO:
for
(
size_t
i
=
0
;
i
<=
halfSize
;
i
++
)
{
integralData
[
i
]
=
0
;
}
for
(
size_t
i
=
0
;
i
<
num
;
i
++
)
{
real
*
targetPtr
=
targetData
+
i
*
numCols
;
real
*
imgPtr
=
imgData
+
i
*
numCols
;
real
*
diffPtr
=
diffData
+
i
*
numCols
;
for
(
size_t
m
=
0
;
m
<
height
;
m
++
)
{
for
(
size_t
n
=
0
;
n
<
width
;
n
++
)
{
for
(
size_t
c
=
0
;
c
<
channels
;
c
++
)
{
integralData
[
c
+
halfSize
+
1
]
=
integralData
[
c
+
halfSize
]
+
_square
(
*
(
diffPtr
+
c
*
imgPixels
));
}
for
(
size_t
k
=
channels
+
halfSize
+
1
;
k
<=
channels
+
sizeX
;
k
++
)
{
integralData
[
k
]
=
integralData
[
channels
+
halfSize
];
CHECK
(
height
*
width
*
channels
==
numCols
);
// TODO(hedaoyuan) After commit TensorExpress code,
// Reconstruction this code to remove the temporary memory.
CpuMatrix
tmp
(
channels
,
height
*
width
);
CpuMatrix
tmp2
(
tmp
.
getData
(),
1
,
channels
*
height
*
width
);
denoms
.
zero
();
const
int
start
=
-
((
int
)
sizeX
-
1
)
/
2
;
const
int
end
=
(
int
)
sizeX
+
start
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
input
.
subMatrix
(
i
,
1
)
->
square2
(
tmp2
);
CpuMatrix
subDen
(
denoms
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
subDen
.
subMatrix
(
c
,
1
)
->
add
(
*
tmp
.
subMatrix
(
c
+
s
,
1
));
}
for
(
size_t
k
=
0
;
k
<
channels
;
k
+=
1
)
{
real
a
=
integralData
[
k
+
sizeX
]
-
integralData
[
k
];
a
=
scale
*
a
+
1
;
targetPtr
[
k
*
imgPixels
]
=
imgPtr
[
k
*
imgPixels
]
*
_pow
(
a
,
-
pow
);
}
diffPtr
++
;
targetPtr
++
;
imgPtr
++
;
}
}
}
free
(
integralData
);
integralData
=
NULL
;
denoms
.
add
(
scale
,
(
real
)
1
);
this
->
pow2
(
denoms
,
-
pow
);
this
->
dotMul
(
input
);
}
void
CpuMatrix
::
crossMapNormalBwd
(
Matrix
&
localGrad
,
...
...
@@ -2282,19 +2273,63 @@ void CpuMatrix::crossMapNormalBwd(Matrix& localGrad,
size_t
channels
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
size
,
size_t
size
X
,
float
scale
,
float
pow
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
CHECK
(
imgSizeH
*
imgSizeW
*
channels
==
preOutV
.
getWidth
());
CHECK
(
denoms
.
getHeight
()
==
preOutV
.
getHeight
()
&&
denoms
.
getWidth
()
==
preOutV
.
getWidth
()
&&
preOutV
.
getHeight
()
==
height_
&&
preOutV
.
getWidth
()
==
width_
);
CHECK
(
denoms
.
getHeight
()
==
localGrad
.
getHeight
()
&&
denoms
.
getWidth
()
==
localGrad
.
getWidth
());
// NOLINT // TODO:
CHECK
(
isContiguous
());
CHECK
(
localGrad
.
isContiguous
());
CHECK
(
denoms
.
isContiguous
());
CHECK
(
preOutV
.
isContiguous
());
CHECK
(
localOutV
.
isContiguous
());
CHECK_EQ
(
getHeight
(),
localGrad
.
getHeight
());
CHECK_EQ
(
getWidth
(),
localGrad
.
getWidth
());
CHECK_EQ
(
getHeight
(),
denoms
.
getHeight
());
CHECK_EQ
(
getWidth
(),
denoms
.
getWidth
());
CHECK_EQ
(
getHeight
(),
preOutV
.
getHeight
());
CHECK_EQ
(
getWidth
(),
preOutV
.
getWidth
());
CHECK_EQ
(
getHeight
(),
localOutV
.
getHeight
());
CHECK_EQ
(
getWidth
(),
localOutV
.
getWidth
());
size_t
numSample
=
getHeight
();
size_t
numCols
=
getWidth
();
size_t
height
=
imgSizeH
;
size_t
width
=
imgSizeW
;
CHECK
(
height
*
width
*
channels
==
numCols
);
// TODO(hedaoyuan) After commit TensorExpress code,
// Reconstruction this code to remove the temporary memory.
CpuMatrix
tmp
(
1
,
height
*
width
);
const
int
start
=
-
((
int
)
sizeX
)
/
2
;
const
int
end
=
(
int
)
sizeX
+
start
;
const
real
ratio
=
-
(
real
)
2
*
scale
*
pow
;
for
(
size_t
i
=
0
;
i
<
numSample
;
i
++
)
{
CpuMatrix
inputDiff
(
this
->
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
outDiff
(
localGrad
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
input
(
preOutV
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
output
(
localOutV
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
CpuMatrix
subDen
(
denoms
.
subMatrix
(
i
,
1
)
->
getData
(),
channels
,
height
*
width
);
for
(
int
c
=
0
;
c
<
(
int
)
channels
;
c
++
)
{
tmp
.
pow2
(
*
subDen
.
subMatrix
(
c
,
1
),
-
pow
);
inputDiff
.
subMatrix
(
c
,
1
)
->
addDotMul
(
tmp
,
*
outDiff
.
subMatrix
(
c
,
1
),
(
real
)
1
,
(
real
)
1
);
for
(
int
s
=
start
;
s
<
end
;
s
++
)
{
if
(
c
+
s
>=
0
&&
c
+
s
<
(
int
)
channels
)
{
tmp
.
dotMul
(
*
outDiff
.
subMatrix
(
c
+
s
,
1
),
*
output
.
subMatrix
(
c
+
s
,
1
));
tmp
.
mulScalar
(
ratio
);
tmp
.
dotDiv
(
tmp
,
*
subDen
.
subMatrix
(
c
+
s
,
1
));
tmp
.
dotMul
(
*
input
.
subMatrix
(
c
,
1
));
inputDiff
.
subMatrix
(
c
,
1
)
->
add
(
tmp
);
}
}
}
}
}
/**
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
529f24c2
...
...
@@ -1261,6 +1261,121 @@ TEST(Matrix, MaxOutFwdBwd) {
}
}
}
void
testCrossMapNormalFwd
(
int
numSamples
,
int
channels
,
int
imgSizeH
,
int
imgSizeW
,
int
sizeX
)
{
float
scale
=
1.5
;
float
pow
=
0.5
;
int
width
=
imgSizeH
*
imgSizeW
*
channels
;
MatrixPtr
input
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
denorms
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
target
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
inputGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
denormsGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
targetGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
input
->
randomizeUniform
();
target
->
randomizeUniform
();
inputGpu
->
copyFrom
(
*
input
);
targetGpu
->
copyFrom
(
*
target
);
target
->
crossMapNormalFwd
(
*
input
,
imgSizeH
,
imgSizeW
,
*
denorms
,
channels
,
sizeX
,
scale
,
pow
);
targetGpu
->
crossMapNormalFwd
(
*
inputGpu
,
imgSizeH
,
imgSizeW
,
*
denormsGpu
,
channels
,
sizeX
,
scale
,
pow
);
TensorCheckErr
(
*
target
,
*
targetGpu
);
TensorCheckErr
(
*
denorms
,
*
denormsGpu
);
}
TEST
(
Matrix
,
crossMapNormalFwd
)
{
for
(
auto
numSamples
:
{
5
,
32
})
{
for
(
auto
channels
:
{
1
,
5
,
32
})
{
for
(
auto
imgSizeH
:
{
5
,
33
,
100
})
{
for
(
auto
imgSizeW
:
{
5
,
32
,
96
})
{
for
(
auto
sizeX
:
{
1
,
2
,
3
,
5
,
7
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" channels="
<<
channels
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
<<
" sizeX="
<<
sizeX
;
testCrossMapNormalFwd
(
numSamples
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
);
}
}
}
}
}
}
void
testCrossMapNormalBwd
(
int
numSamples
,
int
channels
,
int
imgSizeH
,
int
imgSizeW
,
int
sizeX
)
{
float
scale
=
1.5
;
float
pow
=
0.5
;
size_t
width
=
imgSizeH
*
imgSizeW
*
channels
;
MatrixPtr
localGrad
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
denoms
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
output
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
preOutV
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
MatrixPtr
localOutV
=
CpuMatrix
::
create
(
numSamples
,
width
,
false
,
false
);
localGrad
->
randomizeUniform
();
denoms
->
randomizeUniform
();
preOutV
->
randomizeUniform
();
localOutV
->
randomizeUniform
();
output
->
randomizeUniform
();
denoms
->
add
(
0.01
);
MatrixPtr
localGradGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
denomsGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
outputGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
preOutVGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
MatrixPtr
localOutVGpu
=
GpuMatrix
::
create
(
numSamples
,
width
,
false
,
true
);
localGradGpu
->
copyFrom
(
*
localGrad
);
denomsGpu
->
copyFrom
(
*
denoms
);
preOutVGpu
->
copyFrom
(
*
preOutV
);
localOutVGpu
->
copyFrom
(
*
localOutV
);
outputGpu
->
copyFrom
(
*
output
);
output
->
crossMapNormalBwd
(
*
localGrad
,
*
denoms
,
*
preOutV
,
*
localOutV
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
outputGpu
->
crossMapNormalBwd
(
*
localGradGpu
,
*
denomsGpu
,
*
preOutVGpu
,
*
localOutVGpu
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
,
scale
,
pow
);
TensorCheckErr
(
*
output
,
*
outputGpu
);
}
TEST
(
Matrix
,
crossMapNormalBwd
)
{
for
(
auto
numSamples
:
{
5
,
32
})
{
for
(
auto
channels
:
{
1
,
5
,
32
})
{
for
(
auto
imgSizeH
:
{
5
,
33
,
100
})
{
for
(
auto
imgSizeW
:
{
5
,
32
,
96
})
{
for
(
auto
sizeX
:
{
1
,
2
,
3
,
5
,
7
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" channels="
<<
channels
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
<<
" sizeX="
<<
sizeX
;
testCrossMapNormalBwd
(
numSamples
,
channels
,
imgSizeH
,
imgSizeW
,
sizeX
);
}
}
}
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录