Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
51c45854
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
51c45854
编写于
3月 13, 2017
作者:
L
liuyuan
提交者:
GitHub
3月 13, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #678 from pengli09/fix-crf-weight-and-coeff-bug
Fix bug in processing instance weight and coeff in CRFLayer
上级
b07be67e
e80a3cfb
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
262 addition
and
86 deletion
+262
-86
paddle/gserver/layers/CRFDecodingLayer.cpp
paddle/gserver/layers/CRFDecodingLayer.cpp
+1
-1
paddle/gserver/layers/CRFLayer.cpp
paddle/gserver/layers/CRFLayer.cpp
+15
-15
paddle/gserver/layers/CRFLayer.h
paddle/gserver/layers/CRFLayer.h
+3
-2
paddle/gserver/layers/LinearChainCRF.cpp
paddle/gserver/layers/LinearChainCRF.cpp
+35
-37
paddle/gserver/layers/LinearChainCRF.h
paddle/gserver/layers/LinearChainCRF.h
+21
-5
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+8
-0
paddle/gserver/tests/test_CRFLayerGrad.cpp
paddle/gserver/tests/test_CRFLayerGrad.cpp
+174
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+0
-21
paddle/gserver/tests/test_LinearChainCRF.cpp
paddle/gserver/tests/test_LinearChainCRF.cpp
+1
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+2
-2
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
..._helpers/tests/configs/protostr/test_cost_layers.protostr
+2
-2
未找到文件。
paddle/gserver/layers/CRFDecodingLayer.cpp
浏览文件 @
51c45854
...
...
@@ -24,7 +24,7 @@ bool CRFDecodingLayer::init(const LayerMap& layerMap,
return
false
;
}
crf_
.
reset
(
new
LinearChainCRF
(
numClasses_
,
parameter_
->
getBuf
(
PARAMETER_VALUE
)
->
getData
()
,
nullptr
));
numClasses_
,
parameter_
->
getBuf
(
PARAMETER_VALUE
)
->
getData
()));
return
true
;
}
...
...
paddle/gserver/layers/CRFLayer.cpp
浏览文件 @
51c45854
...
...
@@ -42,6 +42,7 @@ bool CRFLayer::init(const LayerMap& layerMap,
CHECK_EQ
(
parameters_
[
0
]
->
getSize
(),
numClasses_
*
(
numClasses_
+
2
));
parameter_
=
parameters_
[
0
];
weight_
.
reset
(
new
Weight
(
numClasses_
+
2
,
numClasses_
,
parameter_
));
// We don't need sequenceStartPositions because each sample of output_ is
// for the cost of one sequence.
...
...
@@ -69,11 +70,7 @@ void CRFLayer::forward(PassType passType) {
for
(
size_t
i
=
0
;
i
<
numSequences
;
++
i
)
{
if
(
i
>=
crfs_
.
size
())
{
crfs_
.
emplace_back
(
numClasses_
,
parameter_
->
getBuf
(
PARAMETER_VALUE
)
->
getData
(),
parameter_
->
getBuf
(
PARAMETER_GRADIENT
)
?
parameter_
->
getBuf
(
PARAMETER_GRADIENT
)
->
getData
()
:
nullptr
);
crfs_
.
emplace_back
(
numClasses_
,
weight_
->
getW
()
->
getData
());
}
output_
.
value
->
getData
()[
i
]
=
crfs_
[
i
].
forward
(
output
.
value
->
getData
()
+
numClasses_
*
starts
[
i
],
...
...
@@ -93,22 +90,25 @@ void CRFLayer::backward(const UpdateCallback& callback) {
const
int
*
starts
=
label
.
sequenceStartPositions
->
getData
(
false
);
int
numSequences
=
label
.
sequenceStartPositions
->
getSize
()
-
1
;
bool
needWGrad
=
weight_
->
getWGrad
()
?
true
:
false
;
for
(
int
i
=
0
;
i
<
numSequences
;
++
i
)
{
crfs_
[
i
].
backward
(
output
.
value
->
getData
()
+
numClasses_
*
starts
[
i
],
output
.
grad
->
getData
()
+
numClasses_
*
starts
[
i
],
label
.
ids
->
getData
()
+
starts
[
i
],
starts
[
i
+
1
]
-
starts
[
i
]);
if
(
weightLayer_
)
{
real
weight
=
getInputValue
(
*
weightLayer_
)
->
getElement
(
i
,
0
);
MatrixPtr
grad
=
output
.
grad
->
subRowMatrix
(
starts
[
i
],
starts
[
i
+
1
]);
grad
->
mulScalar
(
weight
);
starts
[
i
+
1
]
-
starts
[
i
],
needWGrad
);
real
instanceWeight
=
weightLayer_
?
getInputValue
(
*
weightLayer_
)
->
getElement
(
i
,
0
)
:
real
(
1.0
f
);
instanceWeight
*=
coeff_
;
MatrixPtr
grad
=
output
.
grad
->
subRowMatrix
(
starts
[
i
],
starts
[
i
+
1
]);
grad
->
add
(
*
crfs_
[
i
].
getXGrad
(),
real
(
1.0
f
),
instanceWeight
);
if
(
needWGrad
)
{
weight_
->
getWGrad
()
->
add
(
*
crfs_
[
i
].
getWGrad
(),
real
(
1.0
f
),
instanceWeight
);
}
}
if
(
coeff_
!=
real
(
1.0
f
))
{
output
.
grad
->
mulScalar
(
coeff_
);
}
parameter_
->
incUpdate
(
callback
);
}
...
...
paddle/gserver/layers/CRFLayer.h
浏览文件 @
51c45854
...
...
@@ -38,8 +38,9 @@ protected:
size_t
numClasses_
;
ParameterPtr
parameter_
;
std
::
vector
<
LinearChainCRF
>
crfs_
;
LayerPtr
weightLayer_
;
// weight for each sequence
real
coeff_
;
// weight for the layer
LayerPtr
weightLayer_
;
// weight for each sequence
std
::
unique_ptr
<
Weight
>
weight_
;
// parameters
real
coeff_
;
// weight for the layer
};
}
// namespace paddle
paddle/gserver/layers/LinearChainCRF.cpp
浏览文件 @
51c45854
...
...
@@ -17,18 +17,12 @@ limitations under the License. */
namespace
paddle
{
LinearChainCRF
::
LinearChainCRF
(
int
numClasses
,
real
*
para
,
real
*
grad
)
LinearChainCRF
::
LinearChainCRF
(
int
numClasses
,
real
*
para
)
:
numClasses_
(
numClasses
)
{
a_
=
Matrix
::
create
(
para
,
1
,
numClasses_
);
b_
=
Matrix
::
create
(
para
+
numClasses_
,
1
,
numClasses_
);
w_
=
Matrix
::
create
(
para
+
2
*
numClasses_
,
numClasses_
,
numClasses_
);
if
(
grad
)
{
da_
=
Matrix
::
create
(
grad
,
1
,
numClasses_
);
db_
=
Matrix
::
create
(
grad
+
numClasses_
,
1
,
numClasses_
);
dw_
=
Matrix
::
create
(
grad
+
2
*
numClasses_
,
numClasses_
,
numClasses_
);
}
ones_
=
Matrix
::
create
(
1
,
numClasses_
);
ones_
->
one
();
...
...
@@ -107,19 +101,24 @@ real LinearChainCRF::forward(real* x, int* s, int length) {
return
-
ll
;
}
void
LinearChainCRF
::
backward
(
real
*
x
,
real
*
dx
,
int
*
s
,
int
length
)
{
void
LinearChainCRF
::
backward
(
real
*
x
,
int
*
s
,
int
length
,
bool
needWGrad
)
{
MatrixPtr
matX
=
Matrix
::
create
(
x
,
length
,
numClasses_
);
MatrixPtr
matDX
=
Matrix
::
create
(
dx
,
length
,
numClasses_
);
MatrixPtr
matGrad
=
Matrix
::
create
(
length
,
numClasses_
);
Matrix
::
resizeOrCreate
(
matGrad_
,
length
,
numClasses_
);
Matrix
::
resizeOrCreate
(
beta_
,
length
,
numClasses_
);
real
*
b
=
b_
->
getData
();
real
*
dw
=
dw_
?
dw_
->
getData
()
:
nullptr
;
if
(
needWGrad
)
{
Matrix
::
resizeOrCreate
(
matWGrad_
,
numClasses_
+
2
,
numClasses_
);
matWGrad_
->
zeroMem
();
da_
=
matWGrad_
->
subRowMatrix
(
0
,
1
);
db_
=
matWGrad_
->
subRowMatrix
(
1
,
2
);
dw_
=
matWGrad_
->
subRowMatrix
(
2
,
numClasses_
+
2
);
}
real
*
alpha
=
alpha_
->
getData
();
real
*
beta
=
beta_
->
getData
();
real
*
expW
=
expW_
->
getData
();
real
*
expX
=
expX_
->
getData
();
real
*
grad
=
matGrad
->
getData
();
real
*
grad
=
matGrad
_
->
getData
();
for
(
int
i
=
0
;
i
<
numClasses_
;
++
i
)
{
beta
[(
length
-
1
)
*
numClasses_
+
i
]
=
exp
(
b
[
i
]);
...
...
@@ -140,39 +139,38 @@ void LinearChainCRF::backward(real* x, real* dx, int* s, int length) {
normalizeL1
(
beta
+
k
*
numClasses_
,
numClasses_
);
}
matGrad
->
dotMul
(
*
alpha_
,
*
beta_
);
matGrad
->
rowNormalizeL1
(
*
matGrad
);
matGrad
_
->
dotMul
(
*
alpha_
,
*
beta_
);
matGrad
_
->
rowNormalizeL1
(
*
matGrad_
);
for
(
int
k
=
0
;
k
<
length
;
++
k
)
{
grad
[
k
*
numClasses_
+
s
[
k
]]
-=
(
real
)
1
;
}
matDX
->
add
(
*
matGrad
);
if
(
da_
)
{
da_
->
add
(
*
matGrad
->
subMatrix
(
/* startRow= */
0
,
/* numRows= */
1
));
}
if
(
db_
)
{
db_
->
add
(
*
matGrad
->
subMatrix
(
/* startRow= */
length
-
1
,
1
));
}
beta_
->
dotMul
(
*
beta_
,
*
expX_
);
beta_
->
rowNormalizeL1
(
*
beta_
);
if
(
needWGrad
)
{
da_
->
add
(
*
matGrad_
->
subMatrix
(
/* startRow= */
0
,
/* numRows= */
1
));
db_
->
add
(
*
matGrad_
->
subMatrix
(
/* startRow= */
length
-
1
,
1
));
for
(
int
k
=
1
;
dw
&&
k
<
length
;
++
k
)
{
real
sum
=
0
;
for
(
int
i
=
0
;
i
<
numClasses_
;
++
i
)
{
for
(
int
j
=
0
;
j
<
numClasses_
;
++
j
)
{
sum
+=
expW
[
i
*
numClasses_
+
j
]
*
alpha
[(
k
-
1
)
*
numClasses_
+
i
]
*
beta
[
k
*
numClasses_
+
j
];
beta_
->
dotMul
(
*
beta_
,
*
expX_
);
beta_
->
rowNormalizeL1
(
*
beta_
);
real
*
dw
=
dw_
->
getData
();
for
(
int
k
=
1
;
k
<
length
;
++
k
)
{
real
sum
=
0
;
for
(
int
i
=
0
;
i
<
numClasses_
;
++
i
)
{
for
(
int
j
=
0
;
j
<
numClasses_
;
++
j
)
{
sum
+=
expW
[
i
*
numClasses_
+
j
]
*
alpha
[(
k
-
1
)
*
numClasses_
+
i
]
*
beta
[
k
*
numClasses_
+
j
];
}
}
}
sum
=
1
/
sum
;
for
(
int
i
=
0
;
i
<
numClasses_
;
++
i
)
{
for
(
int
j
=
0
;
j
<
numClasses_
;
++
j
)
{
dw
[
i
*
numClasses_
+
j
]
+=
sum
*
expW
[
i
*
numClasses_
+
j
]
*
alpha
[(
k
-
1
)
*
numClasses_
+
i
]
*
beta
[
k
*
numClasses_
+
j
];
sum
=
1
/
sum
;
for
(
int
i
=
0
;
i
<
numClasses_
;
++
i
)
{
for
(
int
j
=
0
;
j
<
numClasses_
;
++
j
)
{
dw
[
i
*
numClasses_
+
j
]
+=
sum
*
expW
[
i
*
numClasses_
+
j
]
*
alpha
[(
k
-
1
)
*
numClasses_
+
i
]
*
beta
[
k
*
numClasses_
+
j
];
}
}
dw
[
s
[
k
-
1
]
*
numClasses_
+
s
[
k
]]
-=
(
real
)
1
;
}
dw
[
s
[
k
-
1
]
*
numClasses_
+
s
[
k
]]
-=
(
real
)
1
;
}
}
...
...
paddle/gserver/layers/LinearChainCRF.h
浏览文件 @
51c45854
...
...
@@ -21,7 +21,7 @@ namespace paddle {
class
LinearChainCRF
{
public:
/**
* The size of para
and grad
must be \f$(numClasses + 2) * numClasses\f$.
* The size of para must be \f$(numClasses + 2) * numClasses\f$.
* The first numClasses values of para are for starting weights (\f$a\f$).
* The next numClasses values of para are for ending weights (\f$b\f$),
* The remaning values are for transition weights (\f$w\f$).
...
...
@@ -34,7 +34,7 @@ public:
* all possible
* sequences is \f$1\f$, and \f$x\f$ is the input feature to the CRF.
*/
LinearChainCRF
(
int
numClasses
,
real
*
para
,
real
*
grad
);
LinearChainCRF
(
int
numClasses
,
real
*
para
);
/**
* Calculate the negative log likelihood of s given x.
...
...
@@ -45,29 +45,45 @@ public:
/**
* Calculate the gradient with respect to x, a, b, and w.
* The gradient of x will be stored in dx.
* backward() can only be called after a corresponding call to forward() with
* the same x, s and length.
* @note The gradient is added to dx and grad (provided at constructor).
* The gradient with respect to a, b, and w will not be calculated if
* needWGrad is false.
* @note Please call getWGrad() and getXGrad() to get the gradient with
* respect to (a, b, w) and x respectively.
*/
void
backward
(
real
*
x
,
real
*
dx
,
int
*
s
,
int
length
);
void
backward
(
real
*
x
,
int
*
s
,
int
length
,
bool
needWGrad
);
/**
* Find the most probable sequence given x. The result will be stored in s.
*/
void
decode
(
real
*
x
,
int
*
s
,
int
length
);
/*
* Return the gradient with respect to (a, b, w). It can only be called after
* a corresponding call to backward().
*/
MatrixPtr
getWGrad
()
{
return
matWGrad_
;
}
/*
* Return the gradient with respect to x. It can only be called after a
* corresponding call to backward().
*/
MatrixPtr
getXGrad
()
{
return
matGrad_
;
}
protected:
int
numClasses_
;
MatrixPtr
a_
;
MatrixPtr
b_
;
MatrixPtr
w_
;
MatrixPtr
matWGrad_
;
MatrixPtr
da_
;
MatrixPtr
db_
;
MatrixPtr
dw_
;
MatrixPtr
ones_
;
MatrixPtr
expX_
;
MatrixPtr
matGrad_
;
MatrixPtr
alpha_
;
MatrixPtr
beta_
;
MatrixPtr
maxX_
;
...
...
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
51c45854
...
...
@@ -18,6 +18,14 @@ add_unittest_without_exec(test_LayerGrad
add_test
(
NAME test_LayerGrad
COMMAND test_LayerGrad
)
################ test_CRFLayerGrad ####################
add_unittest_without_exec
(
test_CRFLayerGrad
test_CRFLayerGrad.cpp
LayerGradUtil.cpp
)
add_test
(
NAME test_CRFLayerGrad
COMMAND test_CRFLayerGrad
)
add_unittest_without_exec
(
test_ActivationGrad
test_ActivationGrad.cpp
LayerGradUtil.cpp
)
...
...
paddle/gserver/tests/test_CRFLayerGrad.cpp
0 → 100644
浏览文件 @
51c45854
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/gserver/layers/LinearChainCRF.h"
#include "paddle/trainer/Trainer.h"
#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"
using
namespace
paddle
;
// NOLINT
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
static
inline
bool
getNextSequence
(
std
::
vector
<
int
>&
seq
,
int
numClasses
)
{
for
(
auto
&
v
:
seq
)
{
if
(
++
v
<
numClasses
)
{
return
true
;
}
v
=
0
;
}
return
false
;
}
// log(exp(x) + exp(y))
static
inline
real
logSum
(
real
x
,
real
y
)
{
real
maxValue
=
std
::
max
(
x
,
y
);
if
(
std
::
isinf
(
maxValue
))
{
return
-
std
::
numeric_limits
<
real
>::
infinity
();
}
else
{
return
maxValue
+
log
(
exp
(
x
-
maxValue
)
+
exp
(
y
-
maxValue
));
}
}
static
inline
std
::
vector
<
int
>
genRandLabels
(
int
numClasses
,
int
length
)
{
std
::
vector
<
int
>
labels
(
length
);
for
(
int
i
=
0
;
i
<
length
;
++
i
)
{
labels
[
i
]
=
rand
()
%
numClasses
;
// NOLINT
}
return
labels
;
}
TEST
(
CRFLayer
,
cost
)
{
const
int
numClasses
=
4
;
CpuVector
para
(
numClasses
*
(
numClasses
+
2
));
real
*
a
=
para
.
getData
();
real
*
b
=
para
.
getData
()
+
numClasses
;
real
*
w
=
para
.
getData
()
+
2
*
numClasses
;
LinearChainCRF
crf
(
4
,
para
.
getData
());
for
(
int
length
:
{
1
,
2
,
3
,
10
})
{
for
(
int
tries
=
0
;
tries
<
10
;
++
tries
)
{
CpuMatrix
x
(
length
,
numClasses
);
x
.
randomizeUniform
();
para
.
randnorm
(
0
,
2
);
std
::
vector
<
int
>
goldenLabels
=
genRandLabels
(
numClasses
,
length
);
real
cost
=
crf
.
forward
(
x
.
getData
(),
goldenLabels
.
data
(),
length
);
real
logZ
=
-
std
::
numeric_limits
<
real
>::
infinity
();
real
logNominator
=
-
std
::
numeric_limits
<
real
>::
infinity
();
std
::
vector
<
int
>
testResult
(
length
,
0
);
do
{
real
score
=
a
[
testResult
.
front
()];
score
+=
x
.
getElement
(
0
,
testResult
.
front
());
for
(
int
k
=
1
;
k
<
length
;
++
k
)
{
score
+=
x
.
getElement
(
k
,
testResult
[
k
])
+
w
[
numClasses
*
testResult
[
k
-
1
]
+
testResult
[
k
]];
}
score
+=
b
[
testResult
.
back
()];
logZ
=
logSum
(
logZ
,
score
);
if
(
goldenLabels
==
testResult
)
{
logNominator
=
score
;
}
}
while
(
getNextSequence
(
testResult
,
numClasses
));
real
trueCost
=
-
logNominator
+
logZ
;
real
diff
=
fabs
(
trueCost
-
cost
);
diff
/=
fabs
(
cost
)
<
fabs
(
trueCost
)
?
fabs
(
cost
)
:
fabs
(
trueCost
);
VLOG
(
1
)
<<
"cost="
<<
cost
<<
" trueCost="
<<
trueCost
<<
" diff="
<<
diff
<<
std
::
endl
;
if
(
typeid
(
real
)
==
typeid
(
double
))
{
// NOLINT
EXPECT_LE
(
diff
,
1e-10
);
}
else
{
EXPECT_LE
(
diff
,
5e-3
);
}
}
}
}
inline
real
epsilon
()
{
return
typeid
(
real
)
==
typeid
(
double
)
?
1e-10
:
0.06
;
}
TestConfig
initTestConfig
(
size_t
numClasses
,
bool
withWeight
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"crf"
);
config
.
layerConfig
.
set_size
(
numClasses
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
numClasses
,
numClasses
*
(
numClasses
+
2
)});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
(
{
INPUT_SEQUENCE_LABEL
,
"layer_label"
,
numClasses
,
0
});
config
.
layerConfig
.
add_inputs
();
if
(
withWeight
)
{
config
.
inputDefs
.
push_back
({
INPUT_DENSE_DIM_DATA
,
"layer_weight"
,
1
,
0
});
config
.
layerConfig
.
add_inputs
();
}
return
config
;
}
TEST
(
Layer
,
CRFLayer
)
{
size_t
numClasses
=
10
;
for
(
int
tries
=
0
;
tries
<
5
;
++
tries
)
{
TestConfig
config
=
initTestConfig
(
numClasses
,
/* withWeight= */
false
);
for
(
int
length
:
{
1
,
3
,
100
})
{
// Not support GPU now
testLayerGrad
(
config
,
"crf"
,
length
,
/* trans= */
false
,
/* useGpu= */
false
,
/* useWeight= */
false
,
epsilon
());
}
}
}
TEST
(
Layer
,
CRFLayerUseWeight
)
{
size_t
numClasses
=
10
;
for
(
int
tries
=
0
;
tries
<
5
;
++
tries
)
{
TestConfig
config
=
initTestConfig
(
numClasses
,
/* withWeight= */
true
);
for
(
int
length
:
{
1
,
3
,
100
})
{
// Not support GPU now
testLayerGrad
(
config
,
"crf"
,
length
,
/* trans= */
false
,
/* useGpu= */
false
,
/* useWeight= */
false
,
epsilon
());
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
initMain
(
argc
,
argv
);
hl_start
();
hl_init
(
FLAGS_gpu_id
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
return
RUN_ALL_TESTS
();
}
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
51c45854
...
...
@@ -276,27 +276,6 @@ TEST(Layer, AddtoLayer) {
}
}
TEST
(
Layer
,
CRFLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"crf"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
10
,
120
});
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_LABEL
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// Not support GPU now
testLayerGrad
(
config
,
"crf"
,
100
,
/* trans */
false
,
/* useGpu */
false
,
false
/*useWeight*/
,
0.03
/*epsilon*/
);
}
TEST
(
Layer
,
CTCLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"ctc"
);
...
...
paddle/gserver/tests/test_LinearChainCRF.cpp
浏览文件 @
51c45854
...
...
@@ -36,7 +36,7 @@ TEST(LinearChainCRF, decoding) {
real
*
a
=
para
.
getData
();
real
*
b
=
para
.
getData
()
+
numClasses
;
real
*
w
=
para
.
getData
()
+
2
*
numClasses
;
LinearChainCRF
crf
(
4
,
para
.
getData
()
,
nullptr
);
LinearChainCRF
crf
(
4
,
para
.
getData
());
for
(
int
length
:
{
1
,
2
,
3
,
10
})
{
for
(
int
tries
=
0
;
tries
<
10
;
++
tries
)
{
CpuMatrix
x
(
length
,
numClasses
);
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
51c45854
...
...
@@ -2998,7 +2998,7 @@ class CRFLayer(LayerBase):
super
(
CRFLayer
,
self
).
__init__
(
name
,
'crf'
,
size
,
inputs
,
device
=
device
)
config_assert
(
2
<=
len
(
self
.
inputs
)
<=
3
,
'CRFLayer must have 2 or 3 inputs'
)
self
.
create_input_parameter
(
0
,
size
*
(
size
+
2
),
[
size
,
size
+
2
])
self
.
create_input_parameter
(
0
,
size
*
(
size
+
2
),
[
size
+
2
,
size
])
self
.
config
.
coeff
=
coeff
...
...
@@ -3020,7 +3020,7 @@ class CRFDecodingLayer(LayerBase):
config_assert
(
len
(
self
.
inputs
)
<=
2
,
'CRFDecodingLayer cannot have more than 2 inputs'
)
self
.
create_input_parameter
(
0
,
size
*
(
size
+
2
),
[
size
,
size
+
2
])
self
.
create_input_parameter
(
0
,
size
*
(
size
+
2
),
[
size
+
2
,
size
])
@
config_layer
(
'ctc'
)
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
浏览文件 @
51c45854
...
...
@@ -239,9 +239,9 @@ parameters {
name: "___crf_layer_0__.w0"
size: 24
initial_mean: 0.0
initial_std: 0.5
dims: 4
initial_std: 0.408248290464
dims: 6
dims: 4
initial_strategy: 0
initial_smart: true
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录