Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
50381eda
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
50381eda
编写于
11月 26, 2019
作者:
W
wangguanzhong
提交者:
GitHub
11月 26, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert fluid.data to fluid.layers.data (#42)
上级
9229209b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
26 addition
and
28 deletion
+26
-28
docs/EXPORT_MODEL.md
docs/EXPORT_MODEL.md
+2
-4
ppdet/data/data_feed.py
ppdet/data/data_feed.py
+6
-6
ppdet/modeling/model_input.py
ppdet/modeling/model_input.py
+18
-18
未找到文件。
docs/EXPORT_MODEL.md
浏览文件 @
50381eda
...
...
@@ -14,14 +14,14 @@
使用
[
训练/评估/推断
](
GETTING_STARTED_cn.md
)
中训练得到的模型进行试用,脚本如下
```
bash
# 导出FasterRCNN模型
# 导出FasterRCNN模型
, 模型中data层默认的shape为3x800x1333
python tools/export_model.py
-c
configs/faster_rcnn_r50_1x.yml
\
--output_dir
=
./inference_model
\
-o
weights
=
output/faster_rcnn_r50_1x/model_final
\
```
-
预测模型会导出到
`inference_model/faster_rcnn_r50_1x`
目录下,模型名和参数名分别为
`__model__`
和
`__params__`
。
预测模型会导出到
`inference_model/faster_rcnn_r50_1x`
目录下,模型名和参数名分别为
`__model__`
和
`__params__`
。
## 设置导出模型的输入大小
...
...
@@ -46,5 +46,3 @@ python tools/export_model.py -c configs/ssd/ssd_mobilenet_v1_voc.yml \
-o
weights
=
https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar
\
SSDTestFeed.image_shape
=[
3,300,300]
```
-
保存FPN系列模型时,需要保证上下采样维度一致,因此image_shape须设置为32的倍数
ppdet/data/data_feed.py
浏览文件 @
50381eda
...
...
@@ -453,7 +453,7 @@ class FasterRCNNTrainFeed(DataFeed):
'image'
,
'im_info'
,
'im_id'
,
'gt_box'
,
'gt_label'
,
'is_crowd'
],
image_shape
=
[
3
,
None
,
None
],
image_shape
=
[
3
,
800
,
1333
],
sample_transforms
=
[
DecodeImage
(
to_rgb
=
True
),
RandomFlipImage
(
prob
=
0.5
),
...
...
@@ -505,7 +505,7 @@ class FasterRCNNEvalFeed(DataFeed):
COCO_VAL_IMAGE_DIR
).
__dict__
,
fields
=
[
'image'
,
'im_info'
,
'im_id'
,
'im_shape'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
],
image_shape
=
[
3
,
None
,
None
],
image_shape
=
[
3
,
800
,
1333
],
sample_transforms
=
[
DecodeImage
(
to_rgb
=
True
),
NormalizeImage
(
mean
=
[
0.485
,
0.456
,
0.406
],
...
...
@@ -552,7 +552,7 @@ class FasterRCNNTestFeed(DataFeed):
dataset
=
SimpleDataSet
(
COCO_VAL_ANNOTATION
,
COCO_VAL_IMAGE_DIR
).
__dict__
,
fields
=
[
'image'
,
'im_info'
,
'im_id'
,
'im_shape'
],
image_shape
=
[
3
,
None
,
None
],
image_shape
=
[
3
,
800
,
1333
],
sample_transforms
=
[
DecodeImage
(
to_rgb
=
True
),
NormalizeImage
(
mean
=
[
0.485
,
0.456
,
0.406
],
...
...
@@ -600,7 +600,7 @@ class MaskRCNNTrainFeed(DataFeed):
'image'
,
'im_info'
,
'im_id'
,
'gt_box'
,
'gt_label'
,
'is_crowd'
,
'gt_mask'
],
image_shape
=
[
3
,
None
,
None
],
image_shape
=
[
3
,
800
,
1333
],
sample_transforms
=
[
DecodeImage
(
to_rgb
=
True
),
RandomFlipImage
(
prob
=
0.5
,
is_mask_flip
=
True
),
...
...
@@ -646,7 +646,7 @@ class MaskRCNNEvalFeed(DataFeed):
dataset
=
CocoDataSet
(
COCO_VAL_ANNOTATION
,
COCO_VAL_IMAGE_DIR
).
__dict__
,
fields
=
[
'image'
,
'im_info'
,
'im_id'
,
'im_shape'
],
image_shape
=
[
3
,
None
,
None
],
image_shape
=
[
3
,
800
,
1333
],
sample_transforms
=
[
DecodeImage
(
to_rgb
=
True
),
NormalizeImage
(
mean
=
[
0.485
,
0.456
,
0.406
],
...
...
@@ -698,7 +698,7 @@ class MaskRCNNTestFeed(DataFeed):
dataset
=
SimpleDataSet
(
COCO_VAL_ANNOTATION
,
COCO_VAL_IMAGE_DIR
).
__dict__
,
fields
=
[
'image'
,
'im_info'
,
'im_id'
,
'im_shape'
],
image_shape
=
[
3
,
None
,
None
],
image_shape
=
[
3
,
800
,
1333
],
sample_transforms
=
[
DecodeImage
(
to_rgb
=
True
),
NormalizeImage
(
...
...
ppdet/modeling/model_input.py
浏览文件 @
50381eda
...
...
@@ -25,22 +25,22 @@ __all__ = ['create_feed']
# yapf: disable
feed_var_def
=
[
{
'name'
:
'im_info'
,
'shape'
:
[
None
,
3
],
'dtype'
:
'float32'
,
'lod_level'
:
0
},
{
'name'
:
'im_id'
,
'shape'
:
[
None
,
1
],
'dtype'
:
'int32'
,
'lod_level'
:
0
},
{
'name'
:
'gt_box'
,
'shape'
:
[
None
,
4
],
'dtype'
:
'float32'
,
'lod_level'
:
1
},
{
'name'
:
'gt_label'
,
'shape'
:
[
None
,
1
],
'dtype'
:
'int32'
,
'lod_level'
:
1
},
{
'name'
:
'is_crowd'
,
'shape'
:
[
None
,
1
],
'dtype'
:
'int32'
,
'lod_level'
:
1
},
{
'name'
:
'gt_mask'
,
'shape'
:
[
None
,
2
],
'dtype'
:
'float32'
,
'lod_level'
:
3
},
{
'name'
:
'is_difficult'
,
'shape'
:
[
None
,
1
],
'dtype'
:
'int32'
,
'lod_level'
:
1
},
{
'name'
:
'gt_score'
,
'shape'
:
[
None
,
1
],
'dtype'
:
'float32'
,
'lod_level'
:
0
},
{
'name'
:
'im_shape'
,
'shape'
:
[
None
,
3
],
'dtype'
:
'float32'
,
'lod_level'
:
0
},
{
'name'
:
'im_size'
,
'shape'
:
[
None
,
2
],
'dtype'
:
'int32'
,
'lod_level'
:
0
},
{
'name'
:
'im_info'
,
'shape'
:
[
3
],
'dtype'
:
'float32'
,
'lod_level'
:
0
},
{
'name'
:
'im_id'
,
'shape'
:
[
1
],
'dtype'
:
'int32'
,
'lod_level'
:
0
},
{
'name'
:
'gt_box'
,
'shape'
:
[
4
],
'dtype'
:
'float32'
,
'lod_level'
:
1
},
{
'name'
:
'gt_label'
,
'shape'
:
[
1
],
'dtype'
:
'int32'
,
'lod_level'
:
1
},
{
'name'
:
'is_crowd'
,
'shape'
:
[
1
],
'dtype'
:
'int32'
,
'lod_level'
:
1
},
{
'name'
:
'gt_mask'
,
'shape'
:
[
2
],
'dtype'
:
'float32'
,
'lod_level'
:
3
},
{
'name'
:
'is_difficult'
,
'shape'
:
[
1
],
'dtype'
:
'int32'
,
'lod_level'
:
1
},
{
'name'
:
'gt_score'
,
'shape'
:
[
1
],
'dtype'
:
'float32'
,
'lod_level'
:
0
},
{
'name'
:
'im_shape'
,
'shape'
:
[
3
],
'dtype'
:
'float32'
,
'lod_level'
:
0
},
{
'name'
:
'im_size'
,
'shape'
:
[
2
],
'dtype'
:
'int32'
,
'lod_level'
:
0
},
]
# yapf: enable
def
create_feed
(
feed
,
iterable
=
False
,
sub_prog_feed
=
False
):
image_shape
=
[
None
]
+
feed
.
image_shape
image_shape
=
feed
.
image_shape
feed_var_map
=
{
var
[
'name'
]:
var
for
var
in
feed_var_def
}
feed_var_map
[
'image'
]
=
{
'name'
:
'image'
,
...
...
@@ -52,10 +52,10 @@ def create_feed(feed, iterable=False, sub_prog_feed=False):
# tensor padding with 0 is used instead of LoD tensor when
# num_max_boxes is set
if
getattr
(
feed
,
'num_max_boxes'
,
None
)
is
not
None
:
feed_var_map
[
'gt_label'
][
'shape'
]
=
[
None
,
feed
.
num_max_boxes
]
feed_var_map
[
'gt_score'
][
'shape'
]
=
[
None
,
feed
.
num_max_boxes
]
feed_var_map
[
'gt_box'
][
'shape'
]
=
[
None
,
feed
.
num_max_boxes
,
4
]
feed_var_map
[
'is_difficult'
][
'shape'
]
=
[
None
,
feed
.
num_max_boxes
]
feed_var_map
[
'gt_label'
][
'shape'
]
=
[
feed
.
num_max_boxes
]
feed_var_map
[
'gt_score'
][
'shape'
]
=
[
feed
.
num_max_boxes
]
feed_var_map
[
'gt_box'
][
'shape'
]
=
[
feed
.
num_max_boxes
,
4
]
feed_var_map
[
'is_difficult'
][
'shape'
]
=
[
feed
.
num_max_boxes
]
feed_var_map
[
'gt_label'
][
'lod_level'
]
=
0
feed_var_map
[
'gt_score'
][
'lod_level'
]
=
0
feed_var_map
[
'gt_box'
][
'lod_level'
]
=
0
...
...
@@ -98,14 +98,14 @@ def create_feed(feed, iterable=False, sub_prog_feed=False):
'lod_level'
:
0
}
image_name_list
.
append
(
name
)
feed_var_map
[
'im_info'
][
'shape'
]
=
[
None
,
feed
.
num_scale
*
3
]
feed_var_map
[
'im_info'
][
'shape'
]
=
[
feed
.
num_scale
*
3
]
feed
.
fields
=
image_name_list
+
feed
.
fields
[
1
:]
if
sub_prog_feed
:
box_names
=
[
'bbox'
,
'bbox_flip'
]
for
box_name
in
box_names
:
sub_prog_feed
=
{
'name'
:
box_name
,
'shape'
:
[
None
,
6
],
'shape'
:
[
6
],
'dtype'
:
'float32'
,
'lod_level'
:
1
}
...
...
@@ -113,7 +113,7 @@ def create_feed(feed, iterable=False, sub_prog_feed=False):
feed
.
fields
=
feed
.
fields
+
[
box_name
]
feed_var_map
[
box_name
]
=
sub_prog_feed
feed_vars
=
OrderedDict
([(
key
,
fluid
.
data
(
feed_vars
=
OrderedDict
([(
key
,
fluid
.
layers
.
data
(
name
=
feed_var_map
[
key
][
'name'
],
shape
=
feed_var_map
[
key
][
'shape'
],
dtype
=
feed_var_map
[
key
][
'dtype'
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录