Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4feb5013
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4feb5013
编写于
3月 08, 2017
作者:
Y
Yi Wang
提交者:
GitHub
3月 08, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1561 from reyoung/feature/better_infer_interface
Add input data interface for inference
上级
7e981630
05b45e1f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
19 addition
and
52 deletion
+19
-52
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+3
-2
python/paddle/v2/inference.py
python/paddle/v2/inference.py
+16
-50
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
4feb5013
...
...
@@ -122,13 +122,14 @@ def main():
test_creator
=
paddle
.
dataset
.
mnist
.
test
()
test_data
=
[]
for
item
in
test_creator
():
test_data
.
append
(
item
[
0
]
)
test_data
.
append
(
(
item
[
0
],
)
)
if
len
(
test_data
)
==
100
:
break
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
probs
=
paddle
.
infer
(
output
=
predict
,
parameters
=
parameters
,
input
=
test_data
)
probs
=
paddle
.
infer
(
output_layer
=
predict
,
parameters
=
parameters
,
input
=
test_data
)
print
probs
.
shape
...
...
python/paddle/v2/inference.py
浏览文件 @
4feb5013
...
...
@@ -9,8 +9,8 @@ __all__ = ['infer']
class
Inference
(
object
):
def
__init__
(
self
,
output
,
parameters
):
topo
=
topology
.
Topology
(
output
)
def
__init__
(
self
,
output
_layer
,
parameters
):
topo
=
topology
.
Topology
(
output
_layer
)
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
topo
.
proto
(),
api
.
CREATE_MODE_TESTING
,
[
api
.
PARAMETER_VALUE
])
for
param
in
gm
.
getParameters
():
...
...
@@ -21,33 +21,16 @@ class Inference(object):
self
.
__gradient_machine__
=
gm
self
.
__data_types__
=
topo
.
data_type
()
def
iter_infer
(
self
,
input
=
None
,
batch_size
=
None
,
reader
=
None
,
feeding
=
None
):
def
iter_infer
(
self
,
input
,
feeding
=
None
):
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
if
reader
is
None
:
assert
input
is
not
None
and
isinstance
(
input
,
collections
.
Iterable
)
if
not
isinstance
(
input
,
collections
.
Iterable
):
raise
TypeError
(
"When reader is None, input should be whole "
"inference data and should be iterable"
)
if
batch_size
is
None
:
if
not
hasattr
(
input
,
'__len__'
):
raise
ValueError
(
"Should set batch size when input data "
"don't contain length."
)
batch_size
=
len
(
input
)
def
__reader_impl__
():
for
each_sample
in
input
:
if
len
(
feeder
)
==
1
:
yield
[
each_sample
]
else
:
yield
each_sample
reader
=
minibatch
.
batch
(
__reader_impl__
,
batch_size
=
batch_size
)
else
:
if
input
is
not
None
:
raise
ValueError
(
"User should set either input or reader, "
"should not set them both."
)
batch_size
=
len
(
input
)
def
__reader_impl__
():
for
each_sample
in
input
:
yield
each_sample
reader
=
minibatch
.
batch
(
__reader_impl__
,
batch_size
=
batch_size
)
self
.
__gradient_machine__
.
start
()
for
data_batch
in
reader
():
yield
self
.
__gradient_machine__
.
forwardTest
(
feeder
(
data_batch
))
...
...
@@ -71,13 +54,7 @@ class Inference(object):
return
retv
def
infer
(
output
,
parameters
,
input
=
None
,
batch_size
=
None
,
reader
=
None
,
feeding
=
None
,
field
=
'value'
):
def
infer
(
output_layer
,
parameters
,
input
,
feeding
=
None
,
field
=
'value'
):
"""
Infer a neural network by given neural network output and parameters. The
user should pass either a batch of input data or reader method.
...
...
@@ -90,19 +67,13 @@ def infer(output,
batch_size=32)
print result
:param output: output of the neural network that would be inferred
:type output: paddle.v2.config_base.Layer
:param output
_layer
: output of the neural network that would be inferred
:type output
_layer
: paddle.v2.config_base.Layer
:param parameters: parameters of the neural network.
:type parameters: paddle.v2.parameters.Parameters
:param input: input data batch. Should be a python iterable object, and each
element is the data batch.
:type input: collections.Iterable
:param batch_size: the batch size when perform inference. Default is the
length of input.
:type batch_size: int
:param reader: input data reader creator in batch. If this field is set, the
`input` and `batch_size` will be ignored.
:type reader: callable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `ids`]. `value`
...
...
@@ -113,10 +84,5 @@ def infer(output,
:rtype: numpy.ndarray
"""
inferer
=
Inference
(
output
=
output
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
input
=
input
,
batch_size
=
batch_size
,
reader
=
reader
,
feeding
=
feeding
)
inferer
=
Inference
(
output_layer
=
output_layer
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
input
=
input
,
feeding
=
feeding
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录