未验证 提交 4f047309 编写于 作者: W wangxinxin08 提交者: GitHub

yolo annotations (#2554)

上级 d59c0ebf
......@@ -20,6 +20,16 @@ class YOLOv3(BaseArch):
yolo_head='YOLOv3Head',
post_process='BBoxPostProcess',
data_format='NCHW'):
"""
YOLOv3 network, see https://arxiv.org/abs/1804.02767
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
yolo_head (nn.Layer): anchor_head instance
bbox_post_process (object): `BBoxPostProcess` instance
data_format (str): data format, NCHW or NHWC
"""
super(YOLOv3, self).__init__(data_format=data_format)
self.backbone = backbone
self.neck = neck
......
......@@ -37,6 +37,22 @@ class ConvBNLayer(nn.Layer):
act="leaky",
name=None,
data_format='NCHW'):
"""
conv + bn + activation layer
Args:
ch_in (int): input channel
ch_out (int): output channel
filter_size (int): filter size, default 3
stride (int): stride, default 1
groups (int): number of groups of conv layer, default 1
padding (int): padding size, default 0
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
act (str): activation function type, default 'leaky', which means leaky_relu
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
......@@ -75,6 +91,20 @@ class DownSample(nn.Layer):
norm_decay=0.,
name=None,
data_format='NCHW'):
"""
downsample layer
Args:
ch_in (int): input channel
ch_out (int): output channel
filter_size (int): filter size, default 3
stride (int): stride, default 2
padding (int): padding size, default 1
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(DownSample, self).__init__()
......@@ -103,6 +133,18 @@ class BasicBlock(nn.Layer):
norm_decay=0.,
name=None,
data_format='NCHW'):
"""
BasicBlock layer of DarkNet
Args:
ch_in (int): input channel
ch_out (int): output channel
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(BasicBlock, self).__init__()
self.conv1 = ConvBNLayer(
......@@ -142,6 +184,18 @@ class Blocks(nn.Layer):
norm_decay=0.,
name=None,
data_format='NCHW'):
"""
Blocks layer, which consist of some BaickBlock layers
Args:
ch_in (int): input channel
ch_out (int): output channel
count (int): number of BasicBlock layer
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(Blocks, self).__init__()
self.basicblock0 = BasicBlock(
......@@ -189,6 +243,18 @@ class DarkNet(nn.Layer):
norm_type='bn',
norm_decay=0.,
data_format='NCHW'):
"""
Darknet, see https://pjreddie.com/darknet/yolo/
Args:
depth (int): depth of network
freeze_at (int): freeze the backbone at which stage
filter_size (int): filter size, default 3
return_idx (list): index of stages whose feature maps are returned
norm_type (str): batch norm type, default bn
norm_decay (str): decay for weight and bias of batch norm layer, default 0.
data_format (str): data format, NCHW or NHWC
"""
super(DarkNet, self).__init__()
self.depth = depth
self.freeze_at = freeze_at
......
......@@ -28,6 +28,18 @@ class YOLOv3Head(nn.Layer):
iou_aware=False,
iou_aware_factor=0.4,
data_format='NCHW'):
"""
Head for YOLOv3 network
Args:
num_classes (int): number of foreground classes
anchors (list): anchors
anchor_masks (list): anchor masks
loss (object): YOLOv3Loss instance
iou_aware (bool): whether to use iou_aware
iou_aware_factor (float): iou aware factor
data_format (str): data format, NCHW or NHWC
"""
super(YOLOv3Head, self).__init__()
self.num_classes = num_classes
self.loss = loss
......
......@@ -46,6 +46,18 @@ class YOLOv3Loss(nn.Layer):
scale_x_y=1.,
iou_loss=None,
iou_aware_loss=None):
"""
YOLOv3Loss layer
Args:
num_calsses (int): number of foreground classes
ignore_thresh (float): threshold to ignore confidence loss
label_smooth (bool): whether to use label smoothing
downsample (list): downsample ratio for each detection block
scale_x_y (float): scale_x_y factor
iou_loss (object): IoULoss instance
iou_aware_loss (object): IouAwareLoss instance
"""
super(YOLOv3Loss, self).__init__()
self.num_classes = num_classes
self.ignore_thresh = ignore_thresh
......
......@@ -27,6 +27,16 @@ __all__ = ['YOLOv3FPN', 'PPYOLOFPN']
class YoloDetBlock(nn.Layer):
def __init__(self, ch_in, channel, norm_type, name, data_format='NCHW'):
"""
YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767
Args:
ch_in (int): input channel
channel (int): base channel
norm_type (str): batch norm type
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(YoloDetBlock, self).__init__()
self.ch_in = ch_in
self.channel = channel
......@@ -78,6 +88,17 @@ class SPP(nn.Layer):
norm_type,
name,
data_format='NCHW'):
"""
SPP layer, which consist of four pooling layer follwed by conv layer
Args:
ch_in (int): input channel of conv layer
ch_out (int): output channel of conv layer
k (int): kernel size of conv layer
norm_type (str): batch norm type
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(SPP, self).__init__()
self.pool = []
for size in pool_size:
......@@ -110,6 +131,15 @@ class SPP(nn.Layer):
class DropBlock(nn.Layer):
def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
"""
DropBlock layer, see https://arxiv.org/abs/1810.12890
Args:
block_size (int): block size
keep_prob (int): keep probability
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(DropBlock, self).__init__()
self.block_size = block_size
self.keep_prob = keep_prob
......@@ -149,6 +179,19 @@ class CoordConv(nn.Layer):
norm_type,
name,
data_format='NCHW'):
"""
CoordConv layer
Args:
ch_in (int): input channel
ch_out (int): output channel
filter_size (int): filter size, default 3
padding (int): padding size, default 0
norm_type (str): batch norm type, default bn
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super(CoordConv, self).__init__()
self.conv = ConvBNLayer(
ch_in + 2,
......@@ -193,6 +236,14 @@ class CoordConv(nn.Layer):
class PPYOLODetBlock(nn.Layer):
def __init__(self, cfg, name, data_format='NCHW'):
"""
PPYOLODetBlock layer
Args:
cfg (list): layer configs for this block
name (str): block name
data_format (str): data format, NCHW or NHWC
"""
super(PPYOLODetBlock, self).__init__()
self.conv_module = nn.Sequential()
for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
......@@ -220,6 +271,15 @@ class YOLOv3FPN(nn.Layer):
in_channels=[256, 512, 1024],
norm_type='bn',
data_format='NCHW'):
"""
YOLOv3FPN layer
Args:
in_channels (list): input channels for fpn
norm_type (str): batch norm type, default bn
data_format (str): data format, NCHW or NHWC
"""
super(YOLOv3FPN, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels
......@@ -300,6 +360,16 @@ class PPYOLOFPN(nn.Layer):
norm_type='bn',
data_format='NCHW',
**kwargs):
"""
PPYOLOFPN layer
Args:
in_channels (list): input channels for fpn
norm_type (str): batch norm type, default bn
data_format (str): data format, NCHW or NHWC
kwargs: extra key-value pairs, such as parameter of DropBlock and spp
"""
super(PPYOLOFPN, self).__init__()
assert len(in_channels) > 0, "in_channels length should > 0"
self.in_channels = in_channels
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册