Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4de2b8e1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4de2b8e1
编写于
8月 18, 2017
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into environ
上级
55437b58
e732b0a5
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
274 addition
and
143 deletion
+274
-143
CMakeLists.txt
CMakeLists.txt
+2
-2
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+3
-3
paddle/framework/framework.proto
paddle/framework/framework.proto
+1
-1
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+1
-1
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+2
-2
paddle/framework/operator.h
paddle/framework/operator.h
+2
-5
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+6
-2
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+20
-7
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+1
-1
paddle/memory/memory.cc
paddle/memory/memory.cc
+1
-0
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-1
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+2
-1
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+1
-1
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-1
paddle/operators/sigmoid_op.h
paddle/operators/sigmoid_op.h
+1
-1
paddle/parameter/Parameter.cpp
paddle/parameter/Parameter.cpp
+6
-4
paddle/parameter/Parameter.h
paddle/parameter/Parameter.h
+35
-2
paddle/pserver/ParameterServer2.cpp
paddle/pserver/ParameterServer2.cpp
+4
-3
paddle/trainer/TrainerConfigHelper.cpp
paddle/trainer/TrainerConfigHelper.cpp
+0
-2
paddle/utils/Flags.cpp
paddle/utils/Flags.cpp
+0
-1
paddle/utils/Flags.h
paddle/utils/Flags.h
+0
-1
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+2
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+117
-97
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+43
-0
python/paddle/v2/framework/tests/test_mean_op.py
python/paddle/v2/framework/tests/test_mean_op.py
+8
-0
python/paddle/v2/framework/tests/test_sigmoid_op.py
python/paddle/v2/framework/tests/test_sigmoid_op.py
+13
-4
未找到文件。
CMakeLists.txt
浏览文件 @
4de2b8e1
...
...
@@ -137,9 +137,9 @@ set(EXTERNAL_LIBS
)
if
(
WITH_GPU
)
list
(
APPEND EXTERNAL_LIB
${
CUDA_LIBRARIES
}
${
CUDA_rt_LIBRARY
}
)
list
(
APPEND EXTERNAL_LIB
S
${
CUDA_LIBRARIES
}
${
CUDA_rt_LIBRARY
}
)
if
(
NOT WITH_DSO
)
list
(
APPEND EXTERNAL_LIB
${
CUDNN_LIBRARY
}
${
CUDA_CUBLAS_LIBRARIES
}
${
CUDA_curand_LIBRARY
}
)
list
(
APPEND EXTERNAL_LIB
S
${
CUDNN_LIBRARY
}
${
CUDA_CUBLAS_LIBRARIES
}
${
CUDA_curand_LIBRARY
}
)
endif
(
NOT WITH_DSO
)
endif
(
WITH_GPU
)
...
...
paddle/framework/backward_test.cc
浏览文件 @
4de2b8e1
...
...
@@ -32,9 +32,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input X of Add"
).
AsNo
Gradient
();
AddInput
(
"b"
,
"Bias of Add"
).
AsNo
Gradient
();
AddOutput
(
"Out"
,
"Out of Add"
).
AsNo
Gradient
();
AddInput
(
"X"
,
"Input X of Add"
).
NotIn
Gradient
();
AddInput
(
"b"
,
"Bias of Add"
).
NotIn
Gradient
();
AddOutput
(
"Out"
,
"Out of Add"
).
NotIn
Gradient
();
AddComment
(
"Add Op"
);
}
};
...
...
paddle/framework/framework.proto
浏览文件 @
4de2b8e1
...
...
@@ -60,7 +60,7 @@ message OpProto {
optional
bool
duplicable
=
3
[
default
=
false
];
optional
bool
intermediate
=
4
[
default
=
false
];
optional
bool
no_gradient
=
5
[
default
=
false
];
optional
bool
no
t_in
_gradient
=
5
[
default
=
false
];
}
// AttrProto describes the C++ type Attribute.
...
...
paddle/framework/grad_op_builder.cc
浏览文件 @
4de2b8e1
...
...
@@ -28,7 +28,7 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
->
inputs
()
:
proto
->
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
if
(
arg
.
no_gradient
()
&&
!
is_grad
)
continue
;
if
(
arg
.
no
t_in
_gradient
()
&&
!
is_grad
)
continue
;
const
std
::
string
src_name
=
arg
.
name
();
std
::
string
dst_name
=
is_grad
?
GradVarName
(
src_name
)
:
src_name
;
dst_inout
[
dst_name
].
reserve
(
src_inout
.
at
(
src_name
).
size
());
...
...
paddle/framework/grad_op_builder_test.cc
浏览文件 @
4de2b8e1
...
...
@@ -26,10 +26,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
IOIgnoredOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"In1"
,
"a single input"
);
AddInput
(
"In2_mult"
,
"a multiple input"
).
AsDuplicable
().
AsNo
Gradient
();
AddInput
(
"In2_mult"
,
"a multiple input"
).
AsDuplicable
().
NotIn
Gradient
();
AddInput
(
"In3_mult"
,
"another multiple input"
).
AsDuplicable
();
AddOutput
(
"Out1_mult"
,
"a multiple output"
).
AsDuplicable
();
AddOutput
(
"Out2"
,
"a single output"
).
AsNo
Gradient
();
AddOutput
(
"Out2"
,
"a single output"
).
NotIn
Gradient
();
AddComment
(
"op with inputs and outputs ignored in gradient calculating"
);
}
};
...
...
paddle/framework/operator.h
浏览文件 @
4de2b8e1
...
...
@@ -184,11 +184,8 @@ class OpProtoAndCheckerMaker {
return
*
this
;
}
// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder
&
AsNoGradient
()
{
var_
->
set_no_gradient
(
true
);
VariableBuilder
&
NotInGradient
()
{
var_
->
set_not_in_gradient
(
true
);
return
*
this
;
}
};
...
...
paddle/gserver/layers/MKLDNNFcLayer.cpp
浏览文件 @
4de2b8e1
...
...
@@ -57,11 +57,14 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
}
void
MKLDNNFcLayer
::
convertWeightsFromPaddle
()
{
if
(
FLAGS_use_mkldnn_wgt
)
{
if
(
hasInitedWgt_
)
{
return
;
}
if
(
hasInitedWgt_
)
{
// TODO(TJ): dst format should get from wgtVal_
int
dstFmt
=
PARAM_FORMAT_MKLDNN_OI
;
int
srcFmt
=
weight_
->
getParameterPtr
()
->
getHeaderFormat
();
if
(
srcFmt
==
dstFmt
)
{
return
;
}
...
...
@@ -78,6 +81,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() {
MatrixPtr
paddleWgtT
;
paddleWgt
->
transpose
(
paddleWgtT
,
true
);
weight_
->
getW
()
->
copyFrom
(
*
paddleWgtT
);
weight_
->
getParameterPtr
()
->
setHeaderFormat
(
dstFmt
);
hasInitedWgt_
=
true
;
}
...
...
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
4de2b8e1
...
...
@@ -330,9 +330,7 @@ void MKLDNNTester::run(const TestConfig& dnn,
log_
=
log
;
lvl_
=
level
;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt
=
false
;
// reset and run once
// Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
reset
(
dnn
,
ref
,
batchSize
);
randomWgtDatas
();
clearWgtDiffs
();
...
...
@@ -342,17 +340,32 @@ void MKLDNNTester::run(const TestConfig& dnn,
runOnce
();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt
=
true
;
// after run once the mkldnn weight has been stored in dnnlayer
if
(
parameters_
[
DNN
].
empty
())
{
// has no paramters
return
;
}
// After run some iterations, the mkldnn weight has been stored in dnnLayer
// and we can also get the mkldnn weight parameter header format.
// Weight parameter should always be index 0 (and bias index 1).
// TODO(TJ): should also consider mean and var format when batchnorm ready
int
dnnWgtFmt
=
parameters_
[
DNN
][
0
]
->
getHeaderFormat
();
int
refWgtFmt
=
parameters_
[
REF
][
0
]
->
getHeaderFormat
();
if
(
dnnWgtFmt
==
refWgtFmt
)
{
// weight format are equal, so no need check more
return
;
}
// then save the weights and restart again
vector
<
VectorPtr
>
dnnWgts
,
refWgts
;
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
saveWgt
(
parameters_
[
REF
],
refWgts
);
// restart again with
flag true
// restart again with
dnn weight format
reset
(
dnn
,
ref
,
batchSize
);
// TODO(TJ): should also considerate mean and var format when batchnorm ready
parameters_
[
DNN
][
0
]
->
setHeaderFormat
(
dnnWgtFmt
);
// restore wgt
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
4de2b8e1
...
...
@@ -108,7 +108,7 @@ private:
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
* The return value should
be
smaller than eps when passing.
*/
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
...
...
paddle/memory/memory.cc
浏览文件 @
4de2b8e1
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <algorithm> // for transform
#include <cstring> // for memcpy
#include <memory> // for unique_ptr
#include <mutex> // for call_once
#include "glog/logging.h"
...
...
paddle/operators/mean_op.cc
浏览文件 @
4de2b8e1
...
...
@@ -34,7 +34,7 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
MeanOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
).
AsNo
Gradient
();
AddOutput
(
"Out"
,
"The output of mean op"
).
NotIn
Gradient
();
AddComment
(
"Mean Operator"
);
}
};
...
...
paddle/operators/mean_op.h
浏览文件 @
4de2b8e1
...
...
@@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel {
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
Eigen
::
DSizes
<
int
,
1
>
bcast
(
ig_size
);
EigenVector
<
T
>::
Flatten
(
*
IG
).
device
(
context
.
GetEigenDevice
<
Place
>
())
=
EigenScalar
<
T
>::
From
(
*
OG
)
/
ig_size
;
(
EigenVector
<
T
>::
From
(
*
OG
)
/
ig_size
).
broadcast
(
bcast
)
;
}
};
...
...
paddle/operators/sgd_op.h
浏览文件 @
4de2b8e1
...
...
@@ -30,7 +30,7 @@ class SGDOpKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param
=
ctx
.
Input
<
Tensor
>
(
"param"
);
auto
grad
=
ctx
.
Input
<
Tensor
>
(
"grad"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
0
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
"param_out"
);
float
lr
=
ctx
.
op_
.
GetAttr
<
float
>
(
"learning_rate"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
paddle/operators/sigmoid_op.cc
浏览文件 @
4de2b8e1
...
...
@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/sigmoid_op.h
浏览文件 @
4de2b8e1
...
...
@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto
Y
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Y
.
device
(
place
)
=
1.
0
/
(
1.0
+
(
-
1.0
*
X
).
exp
());
Y
.
device
(
place
)
=
1.
/
(
1.
+
(
-
X
).
exp
());
}
};
...
...
paddle/parameter/Parameter.cpp
浏览文件 @
4de2b8e1
...
...
@@ -48,7 +48,8 @@ Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit)
deviceId_
(
-
1
),
sharedCount_
(
0
),
updateCounter_
(
0
),
updated_
(
false
)
{
updated_
(
false
),
headerFormat_
(
PARAM_FORMAT_ORIGINAL
)
{
setID
(
-
1
);
/* capture uninitialized id */
if
(
useGpu_
&&
FLAGS_parallel_nn
)
{
/* gpu environment is specified by device property */
...
...
@@ -285,7 +286,7 @@ bool Parameter::save(const std::string& filename) const {
bool
Parameter
::
save
(
std
::
ostream
&
s
)
const
{
CpuVector
vec
(
*
bufs_
[
PARAMETER_VALUE
].
get
());
Header
header
;
header
.
version
=
kFormatVersion
;
header
.
format
=
headerFormat_
;
header
.
valueSize
=
sizeof
(
real
);
header
.
size
=
getSize
();
...
...
@@ -344,8 +345,9 @@ bool Parameter::load(std::istream& s) {
Header
header
;
CHECK
(
s
.
read
(
reinterpret_cast
<
char
*>
(
&
header
),
sizeof
(
header
)))
<<
"Fail to read parameter "
<<
getName
();
CHECK_EQ
(
header
.
version
,
kFormatVersion
)
<<
"Incorrect format version: "
<<
header
.
version
;
CHECK
(
isHeaderFormatSupported
(
header
.
format
))
<<
"Incorrect format version: "
<<
header
.
format
;
headerFormat_
=
header
.
format
;
CHECK_EQ
(
header
.
size
,
getSize
())
<<
"The size ("
<<
header
.
size
<<
") in the file does not match the size "
<<
"("
<<
getSize
()
<<
") of the parameter: "
<<
getName
();
...
...
paddle/parameter/Parameter.h
浏览文件 @
4de2b8e1
...
...
@@ -34,6 +34,20 @@ limitations under the License. */
namespace
paddle
{
typedef
enum
{
/// The paddle original basic format
PARAM_FORMAT_ORIGINAL
=
0
,
/// See mkldnn_memory_format_t in
/// https://github.com/01org/mkl-dnn/blob/master/include/mkldnn_types.h
/// for a detailed description.
/// 2D weights tensor in the format (output channels, input channels).
PARAM_FORMAT_MKLDNN_OI
,
/// The total format items numbers
PARAM_FORMAT_ITEMS
,
}
PARAM_FORMAT
;
class
SparsePrefetchRowCpuMatrix
;
class
Parameter
;
...
...
@@ -242,14 +256,30 @@ public:
/// Initialize the value to 0
void
zeroMem
();
static
const
int
kFormatVersion
=
0
;
/// file header structure
struct
Header
{
int32_t
version
;
// = 0, file format version
int32_t
format
;
// = PARAM_FORMAT
uint32_t
valueSize
;
// = sizeof(real)
uint64_t
size
;
// = getSize()
};
/**
* @brief Is the header format supported.
*/
static
bool
isHeaderFormatSupported
(
int32_t
fmt
)
{
return
fmt
<
PARAM_FORMAT_ITEMS
;
}
/**
* @brief Get the format in header.
*/
int
getHeaderFormat
()
{
return
headerFormat_
;
}
/**
* @brief Set the format in header.
*/
void
setHeaderFormat
(
int32_t
fmt
)
{
headerFormat_
=
fmt
;
}
/**
* @brief Parameter Update Hook.
*
...
...
@@ -321,6 +351,9 @@ protected:
bool
updated_
;
SparseFormat
format_
;
/// The header format for saving or loading param
int32_t
headerFormat_
;
std
::
vector
<
std
::
shared_ptr
<
IParameterUpdaterHook
>>
updaterHooks_
;
public:
...
...
paddle/pserver/ParameterServer2.cpp
浏览文件 @
4de2b8e1
...
...
@@ -1032,8 +1032,8 @@ void ParameterServer2::loadValueVector(const LoadValueRequest& request,
Parameter
::
Header
header
;
CHECK
(
fs
.
read
(
reinterpret_cast
<
char
*>
(
&
header
),
sizeof
(
header
)))
<<
"Fail to read parameters in pserver"
;
CHECK
_EQ
(
header
.
version
,
Parameter
::
kFormatVersion
)
<<
"Incorrect format version: "
<<
header
.
version
;
CHECK
(
Parameter
::
isHeaderFormatSupported
(
header
.
format
)
)
<<
"Incorrect format version: "
<<
header
.
format
;
CHECK_EQ
(
header
.
size
,
(
size_t
)
size_
)
<<
"The size ("
<<
header
.
size
<<
") in the file does not match the size "
<<
"("
<<
size_
<<
") of the pserver: "
<<
serverId_
;
...
...
@@ -1063,7 +1063,8 @@ void ParameterServer2::saveValueVector(const SaveValueRequest& request,
CpuVector
&
vec
=
vectors_
[
PARAMETER_APPLY
]
?
*
vectors_
[
PARAMETER_APPLY
]
:
*
vectors_
[
PARAMETER_VALUE
];
Parameter
::
Header
header
;
header
.
version
=
Parameter
::
kFormatVersion
;
// TODO(TJ): save param headerFormat_
header
.
format
=
PARAM_FORMAT_ORIGINAL
;
header
.
valueSize
=
sizeof
(
real
);
header
.
size
=
size_
;
...
...
paddle/trainer/TrainerConfigHelper.cpp
浏览文件 @
4de2b8e1
...
...
@@ -29,7 +29,6 @@ DECLARE_bool(with_gpu);
DECLARE_bool
(
parallel_nn
);
DECLARE_string
(
config_args
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
const
char
*
kConfigParserModuleName
=
"paddle.trainer.config_parser"
;
const
char
*
kConfigParserFuncName
=
"parse_config_and_serialize"
;
...
...
@@ -47,7 +46,6 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<<
",with_cost="
<<
FLAGS_with_cost
<<
",use_gpu="
<<
FLAGS_use_gpu
<<
",parallel_nn="
<<
FLAGS_parallel_nn
<<
",use_mkldnn="
<<
FLAGS_use_mkldnn
<<
",use_mkldnn_wgt="
<<
FLAGS_use_mkldnn_wgt
<<
",cudnn_version="
<<
hl_get_cudnn_lib_version
();
if
(
!
FLAGS_config_args
.
empty
())
{
configArgs
<<
","
<<
FLAGS_config_args
;
...
...
paddle/utils/Flags.cpp
浏览文件 @
4de2b8e1
...
...
@@ -27,7 +27,6 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool
(
use_mkldnn
,
false
,
"Only support CPU training"
);
#endif
DEFINE_bool
(
use_mkldnn_wgt
,
false
,
"Init weight from CPU weight"
);
DEFINE_bool
(
parallel_nn
,
false
,
"Whether to use multi-threads to calculate one neural network."
...
...
paddle/utils/Flags.h
浏览文件 @
4de2b8e1
...
...
@@ -41,4 +41,3 @@ DECLARE_string(predict_file);
DECLARE_bool
(
prev_batch_state
);
DECLARE_string
(
init_model_path
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
4de2b8e1
...
...
@@ -25,3 +25,5 @@ py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
py_test
(
test_sgd_op SRCS test_sgd_op.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
4de2b8e1
import
unittest
import
numpy
import
itertools
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
...
...
@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def
create_op
(
op_type
):
# TODO need to set attrs
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
...
...
@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
def
get_output
():
...
...
@@ -109,12 +110,110 @@ def get_numeric_gradient(op,
class
GradientChecker
(
unittest
.
TestCase
):
def
assert_is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
,
msg_prefix
):
for
name
in
numeric_grads
:
b
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
a
=
numeric_grads
[
name
]
def
__get_gradient
(
self
,
forward_op
,
backward_op
,
input_value
,
grad_names
,
place
):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
# create input var and set value
for
name
,
value
in
input_value
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
"does not exist in Op's inputs."
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# run forward op
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
)
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# set output var's shape
# set output grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
numpy
.
ones
(
out_tensor
.
shape
(),
dtype
=
numpy
.
float32
)
grad_tensor
.
set
(
data
,
place
)
# run backward op
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
)
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
outs
=
[
numpy
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
for
name
in
grad_names
]
return
outs
def
compare_grad
(
self
,
forward_op
,
input_value
):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:raises: AssertionError, there is different gradient value.
"""
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
set
())
# return if not compile with GPU or not implementing GPU kernel
if
not
(
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
()):
return
outputs
=
backward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
cpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
CPUPlace
())
gpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
GPUPlace
(
0
))
for
c_grad
,
g_grad
,
name
in
itertools
.
izip
(
cpu_grads
,
gpu_grads
,
out_names
):
self
.
assertTrue
(
numpy
.
allclose
(
c_grad
,
g_grad
,
atol
=
1e-4
),
"output name: "
+
name
+
" has diff"
)
def
__assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
...
...
@@ -159,105 +258,26 @@ class GradientChecker(unittest.TestCase):
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
bwd_outputs
=
backward_op
.
outputs
()
bwd_out_names
=
[
item
for
k
in
bwd_outputs
for
item
in
bwd_outputs
[
k
]]
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get numerical gradients
numeric_grads
=
[
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
name
)
for
name
in
inputs_to_check
]
# get operator gradient according to different device
check_names
=
[
grad_var_name
(
name
)
for
name
in
inputs_to_check
]
for
place
in
places
:
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
bwd_out_names
:
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
self
.
assert_is_close
(
numeric_grad
,
scope
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
# get analytical gradients according to different device
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
python/paddle/v2/framework/tests/test_gradient_checker.py
0 → 100644
浏览文件 @
4de2b8e1
import
unittest
import
numpy
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
from
gradient_checker
import
get_numeric_gradient
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-4
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_mean_op.py
浏览文件 @
4de2b8e1
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
...
...
@@ -12,5 +13,12 @@ class TestMeanOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
'X'
])}
class
MeanGradOpTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
create_op
(
"mean"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_sigmoid_op.py
浏览文件 @
4de2b8e1
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
TestSigmoidOp
(
unittest
.
TestCase
):
...
...
@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase):
def
setUp
(
self
):
self
.
type
=
"sigmoid"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
100
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
31
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
#class TestSigmoidGradOp(unittest.TestCase):
#TODO(qingqing) add unit test
class
TestSigmoidGradOp
(
GradientChecker
):
def
test_grad
(
self
):
op
=
create_op
(
"sigmoid"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self
.
compare_grad
(
op
,
inputs
)
# check gradients
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
,
max_relative_error
=
0.007
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录