提交 4d15b107 编写于 作者: R ranqiu

Add multi-head attention

上级 7ad15259
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
IdentityActivation, TanhActivation, SequenceSoftmaxActivation
......@@ -26,9 +26,9 @@ __all__ = [
'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
"img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
'simple_attention', 'dot_product_attention', 'simple_gru2',
'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', 'inputs',
'outputs'
'simple_attention', 'dot_product_attention', 'multi_head_attention',
'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm',
'inputs', 'outputs'
]
######################################################
......@@ -1480,6 +1480,138 @@ def dot_product_attention(encoded_sequence,
input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
@wrap_name_default()
def multi_head_attention(query,
key,
value,
key_proj_size,
value_proj_size,
head_num,
attention_type,
softmax_param_attr=None,
name=None):
"""
Calculate and return a context vector with dot-product attention mechanism.
The dimension of the context vector equals to value_proj_size * head_num.
Please refer to **Attention Is All You Need** for more details. The link is
as follows:
https://arxiv.org/abs/1706.03762.
The example usage is:
.. code-block:: python
context = multi_head_attention(query=decoder_state,
key=enc_seq,
value=enc_seq,
key_proj_size=64,
value_pro_size=64,
head_num=8,
attention_type='dot-product attention')
:param name: A prefix attached to the name of each layer that defined inside
the multi_head_attention.
:type name: basestring
:param softmax_param_attr: The parameter attribute of sequence softmax
that is used to produce attention weight.
:type softmax_param_attr: ParameterAttribute
:param query: query is used to calculate attention weights over values at current step.
:type query: LayerOutput
:param key: key is used to calculate the attention weight of the corresponding value.
:type key: LayerOutput
:param value: value is the sequence to be attended.
:type value: LayerOutput
:param key_proj_size: The dimension of the linear projection performed on key and query.
:type key_proj_size: int
:param value_proj_size: The dimension of the linear projection performed on value.
:type value_proj_size: int
:param head_num: The number of attention heads.
:type head_num: int
:param attention_type: The type of the attention mechanism used in each attention
heads. Now, we only support scaled dot-product attention and ###
additive attention.
:type attention_type: basestring
:return: The context vector.
:rtype: LayerOutput
"""
assert attention_type in ['dot-product attention', 'additive attention']
with mixed_layer(
size=key_proj_size * head_num,
name='%s_query_proj' % name) as query_proj:
query_proj += full_matrix_projection(query)
query_proj = expand_layer(input=query_proj, expand_as=key)
with mixed_layer(
size=key_proj_size * head_num,
name='%s_key_proj' % name) as key_proj:
key_proj += full_matrix_projection(key)
with mixed_layer(
size=value_proj_size * head_num,
name='%s_value_proj' % name) as value_proj:
value_proj += full_matrix_projection(value)
head_list = []
for i in range(head_num):
with mixed_layer(size=key_proj_size) as sub_query_proj:
sub_query_proj += identity_projection(
query_proj, offset=key_proj_size * i)
with mixed_layer(size=key_proj_size) as sub_key_proj:
sub_key_proj += identity_projection(
key_proj, offset=key_proj_size * i)
with mixed_layer(size=value_proj_size) as sub_value_proj:
sub_value_proj += identity_projection(
value_proj, offset=value_proj_size * i)
if attention_type == 'dot-product attention':
m = linear_comb_layer(
weights=sub_query_proj,
vectors=sub_key_proj,
name='%s_dot-product_%d' % (name, i))
m = slope_intercept_layer(
input=m,
slope=math.sqrt(1.0 / key_proj_size),
name='%s_dot-product_scaling_%d' % (name, i))
else:
with mixed_layer(
size=key_proj_size,
act=TanhActivation(),
name='%s_combine_%d' % (name, i)) as m:
m += identity_projection(sub_query_proj)
m += identity_projection(sub_key_proj)
attention_weight = fc_layer(
input=m,
size=1,
act=SequenceSoftmaxActivation(),
param_attr=softmax_param_attr,
name="%s_softmax_%d" % (name, i),
bias_attr=False)
scaled = scaling_layer(
weight=attention_weight,
input=sub_value_proj,
name='%s_scaling_%d' % (name, i))
head = pooling_layer(
input=scaled,
pooling_type=SumPooling(),
name="%s_pooling_%d" % (name, i))
head_list.append(head)
multi_head = concat_layer(head_list)
with mixed_layer(
size=value_proj_size * head_num, name='%s_proj' % name) as attended:
attended += full_matrix_projection(multi_head)
return attended
def inputs(layers, *args):
"""
Declare the inputs of network. The order of input should be as same as
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册