Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4d15b107
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d15b107
编写于
10月 19, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi-head attention
上级
7ad15259
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
136 addition
and
4 deletion
+136
-4
python/paddle/trainer_config_helpers/networks.py
python/paddle/trainer_config_helpers/networks.py
+136
-4
未找到文件。
python/paddle/trainer_config_helpers/networks.py
浏览文件 @
4d15b107
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
from
activations
import
LinearActivation
,
ReluActivation
,
SoftmaxActivation
,
\
IdentityActivation
,
TanhActivation
,
SequenceSoftmaxActivation
...
...
@@ -26,9 +26,9 @@ __all__ = [
'sequence_conv_pool'
,
'simple_lstm'
,
"simple_img_conv_pool"
,
"img_conv_bn_pool"
,
'lstmemory_group'
,
'lstmemory_unit'
,
'small_vgg'
,
'img_conv_group'
,
'vgg_16_network'
,
'gru_unit'
,
'gru_group'
,
'simple_gru'
,
'simple_attention'
,
'dot_product_attention'
,
'
simple_gru2
'
,
'
bidirectional_gru'
,
'text_conv_pool'
,
'bidirectional_lstm'
,
'inputs
'
,
'outputs'
'simple_attention'
,
'dot_product_attention'
,
'
multi_head_attention
'
,
'
simple_gru2'
,
'bidirectional_gru'
,
'text_conv_pool'
,
'bidirectional_lstm
'
,
'
inputs'
,
'
outputs'
]
######################################################
...
...
@@ -1480,6 +1480,138 @@ def dot_product_attention(encoded_sequence,
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
@
wrap_name_default
()
def
multi_head_attention
(
query
,
key
,
value
,
key_proj_size
,
value_proj_size
,
head_num
,
attention_type
,
softmax_param_attr
=
None
,
name
=
None
):
"""
Calculate and return a context vector with dot-product attention mechanism.
The dimension of the context vector equals to value_proj_size * head_num.
Please refer to **Attention Is All You Need** for more details. The link is
as follows:
https://arxiv.org/abs/1706.03762.
The example usage is:
.. code-block:: python
context = multi_head_attention(query=decoder_state,
key=enc_seq,
value=enc_seq,
key_proj_size=64,
value_pro_size=64,
head_num=8,
attention_type='dot-product attention')
:param name: A prefix attached to the name of each layer that defined inside
the multi_head_attention.
:type name: basestring
:param softmax_param_attr: The parameter attribute of sequence softmax
that is used to produce attention weight.
:type softmax_param_attr: ParameterAttribute
:param query: query is used to calculate attention weights over values at current step.
:type query: LayerOutput
:param key: key is used to calculate the attention weight of the corresponding value.
:type key: LayerOutput
:param value: value is the sequence to be attended.
:type value: LayerOutput
:param key_proj_size: The dimension of the linear projection performed on key and query.
:type key_proj_size: int
:param value_proj_size: The dimension of the linear projection performed on value.
:type value_proj_size: int
:param head_num: The number of attention heads.
:type head_num: int
:param attention_type: The type of the attention mechanism used in each attention
heads. Now, we only support scaled dot-product attention and ###
additive attention.
:type attention_type: basestring
:return: The context vector.
:rtype: LayerOutput
"""
assert
attention_type
in
[
'dot-product attention'
,
'additive attention'
]
with
mixed_layer
(
size
=
key_proj_size
*
head_num
,
name
=
'%s_query_proj'
%
name
)
as
query_proj
:
query_proj
+=
full_matrix_projection
(
query
)
query_proj
=
expand_layer
(
input
=
query_proj
,
expand_as
=
key
)
with
mixed_layer
(
size
=
key_proj_size
*
head_num
,
name
=
'%s_key_proj'
%
name
)
as
key_proj
:
key_proj
+=
full_matrix_projection
(
key
)
with
mixed_layer
(
size
=
value_proj_size
*
head_num
,
name
=
'%s_value_proj'
%
name
)
as
value_proj
:
value_proj
+=
full_matrix_projection
(
value
)
head_list
=
[]
for
i
in
range
(
head_num
):
with
mixed_layer
(
size
=
key_proj_size
)
as
sub_query_proj
:
sub_query_proj
+=
identity_projection
(
query_proj
,
offset
=
key_proj_size
*
i
)
with
mixed_layer
(
size
=
key_proj_size
)
as
sub_key_proj
:
sub_key_proj
+=
identity_projection
(
key_proj
,
offset
=
key_proj_size
*
i
)
with
mixed_layer
(
size
=
value_proj_size
)
as
sub_value_proj
:
sub_value_proj
+=
identity_projection
(
value_proj
,
offset
=
value_proj_size
*
i
)
if
attention_type
==
'dot-product attention'
:
m
=
linear_comb_layer
(
weights
=
sub_query_proj
,
vectors
=
sub_key_proj
,
name
=
'%s_dot-product_%d'
%
(
name
,
i
))
m
=
slope_intercept_layer
(
input
=
m
,
slope
=
math
.
sqrt
(
1.0
/
key_proj_size
),
name
=
'%s_dot-product_scaling_%d'
%
(
name
,
i
))
else
:
with
mixed_layer
(
size
=
key_proj_size
,
act
=
TanhActivation
(),
name
=
'%s_combine_%d'
%
(
name
,
i
))
as
m
:
m
+=
identity_projection
(
sub_query_proj
)
m
+=
identity_projection
(
sub_key_proj
)
attention_weight
=
fc_layer
(
input
=
m
,
size
=
1
,
act
=
SequenceSoftmaxActivation
(),
param_attr
=
softmax_param_attr
,
name
=
"%s_softmax_%d"
%
(
name
,
i
),
bias_attr
=
False
)
scaled
=
scaling_layer
(
weight
=
attention_weight
,
input
=
sub_value_proj
,
name
=
'%s_scaling_%d'
%
(
name
,
i
))
head
=
pooling_layer
(
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling_%d"
%
(
name
,
i
))
head_list
.
append
(
head
)
multi_head
=
concat_layer
(
head_list
)
with
mixed_layer
(
size
=
value_proj_size
*
head_num
,
name
=
'%s_proj'
%
name
)
as
attended
:
attended
+=
full_matrix_projection
(
multi_head
)
return
attended
def
inputs
(
layers
,
*
args
):
"""
Declare the inputs of network. The order of input should be as same as
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录