Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4d11c8e9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d11c8e9
编写于
5月 31, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
retest single thread
上级
77599415
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
143 addition
and
81 deletion
+143
-81
paddle/fluid/inference/tests/book/test_inference_nlp.cc
paddle/fluid/inference/tests/book/test_inference_nlp.cc
+143
-81
未找到文件。
paddle/fluid/inference/tests/book/test_inference_nlp.cc
浏览文件 @
4d11c8e9
...
@@ -30,16 +30,19 @@ DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
...
@@ -30,16 +30,19 @@ DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool
(
prepare_vars
,
true
,
"Prepare variables before executor"
);
DEFINE_bool
(
prepare_vars
,
true
,
"Prepare variables before executor"
);
DEFINE_bool
(
prepare_context
,
true
,
"Prepare Context before executor"
);
DEFINE_bool
(
prepare_context
,
true
,
"Prepare Context before executor"
);
DEFINE_int32
(
num_threads
,
1
,
"Number of threads should be used"
);
inline
double
get_current_ms
()
{
inline
double
get_current_ms
()
{
struct
timeval
time
;
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
gettimeofday
(
&
time
,
NULL
);
return
1e+3
*
time
.
tv_sec
+
1e-3
*
time
.
tv_usec
;
return
1e+3
*
time
.
tv_sec
+
1e-3
*
time
.
tv_usec
;
}
}
void
read_data
(
// return size of total words
std
::
vector
<
std
::
vector
<
int64_t
>
>*
out
,
size_t
read_datasets
(
std
::
vector
<
paddle
::
framework
::
LoDTensor
>*
out
,
const
std
::
string
&
filename
=
"/home/tangjian/paddle-tj/out.ids.txt"
)
{
const
std
::
string
&
filename
)
{
using
namespace
std
;
// NOLINT
using
namespace
std
;
// NOLINT
size_t
sz
=
0
;
fstream
fin
(
filename
);
fstream
fin
(
filename
);
string
line
;
string
line
;
out
->
clear
();
out
->
clear
();
...
@@ -50,94 +53,153 @@ void read_data(
...
@@ -50,94 +53,153 @@ void read_data(
while
(
getline
(
iss
,
field
,
' '
))
{
while
(
getline
(
iss
,
field
,
' '
))
{
ids
.
push_back
(
stoi
(
field
));
ids
.
push_back
(
stoi
(
field
));
}
}
out
->
push_back
(
ids
);
if
(
ids
.
size
()
>=
1024
||
out
->
size
()
>=
100
)
{
continue
;
}
paddle
::
framework
::
LoDTensor
words
;
paddle
::
framework
::
LoD
lod
{{
0
,
ids
.
size
()}};
words
.
set_lod
(
lod
);
int64_t
*
pdata
=
words
.
mutable_data
<
int64_t
>
(
{
static_cast
<
int64_t
>
(
ids
.
size
()),
1
},
paddle
::
platform
::
CPUPlace
());
memcpy
(
pdata
,
ids
.
data
(),
words
.
numel
()
*
sizeof
(
int64_t
));
out
->
emplace_back
(
words
);
sz
+=
ids
.
size
();
}
}
return
sz
;
}
void
test_multi_threads
()
{
/*
size_t jobs_per_thread = std::min(inputdatas.size() / FLAGS_num_threads,
inputdatas.size());
std::vector<size_t> workers(FLAGS_num_threads, jobs_per_thread);
workers[FLAGS_num_threads - 1] += inputdatas.size() % FLAGS_num_threads;
std::vector<std::unique_ptr<std::thread>> infer_threads;
for (size_t i = 0; i < workers.size(); ++i) {
infer_threads.emplace_back(new std::thread([&, i]() {
size_t start = i * jobs_per_thread;
for (size_t j = start; j < start + workers[i]; ++j ) {
// 0. Call `paddle::framework::InitDevices()` initialize all the
devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle::framework::LoDTensor words;
auto& srcdata = inputdatas[j];
paddle::framework::LoD lod{{0, srcdata.size()}};
words.set_lod(lod);
int64_t* pdata = words.mutable_data<int64_t>(
{static_cast<int64_t>(srcdata.size()), 1},
paddle::platform::CPUPlace());
memcpy(pdata, srcdata.data(), words.numel() * sizeof(int64_t));
LOG(INFO) << "thread id: " << i << ", words size:" << words.numel();
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&words);
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
if (FLAGS_prepare_vars) {
if (FLAGS_prepare_context) {
TestInference<paddle::platform::CPUPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
FLAGS_use_mkldnn);
} else {
TestInference<paddle::platform::CPUPlace, false, false>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
FLAGS_use_mkldnn);
}
} else {
if (FLAGS_prepare_context) {
TestInference<paddle::platform::CPUPlace, true, true>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
FLAGS_use_mkldnn);
} else {
TestInference<paddle::platform::CPUPlace, true, false>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
FLAGS_use_mkldnn);
}
}
//LOG(INFO) << output1.lod();
//LOG(INFO) << output1.dims();
}
}));
}
auto start_ms = get_current_ms();
for (int i = 0; i < FLAGS_num_threads; ++i) {
infer_threads[i]->join();
}
auto stop_ms = get_current_ms();
LOG(INFO) << "total: " << stop_ms - start_ms << " ms";*/
}
}
TEST
(
inference
,
understand_sentiment
)
{
TEST
(
inference
,
nlp
)
{
if
(
FLAGS_dirname
.
empty
())
{
if
(
FLAGS_dirname
.
empty
())
{
LOG
(
FATAL
)
<<
"Usage: ./example --dirname=path/to/your/model"
;
LOG
(
FATAL
)
<<
"Usage: ./example --dirname=path/to/your/model"
;
}
}
std
::
vector
<
std
::
vector
<
int64_t
>>
inputdatas
;
read_data
(
&
inputdatas
);
LOG
(
INFO
)
<<
"---------- dataset size: "
<<
inputdatas
.
size
();
LOG
(
INFO
)
<<
"FLAGS_dirname: "
<<
FLAGS_dirname
<<
std
::
endl
;
LOG
(
INFO
)
<<
"FLAGS_dirname: "
<<
FLAGS_dirname
<<
std
::
endl
;
std
::
string
dirname
=
FLAGS_dirname
;
std
::
string
dirname
=
FLAGS_dirname
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
>
datasets
;
size_t
num_total_words
=
read_datasets
(
&
datasets
,
"/home/tangjian/paddle-tj/out.ids.txt"
);
LOG
(
INFO
)
<<
"Number of dataset samples(seq len<1024): "
<<
datasets
.
size
();
LOG
(
INFO
)
<<
"Total number of words: "
<<
num_total_words
;
const
bool
model_combined
=
false
;
const
bool
model_combined
=
false
;
int
total_work
=
10
;
int
num_threads
=
2
;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
int
work_per_thread
=
total_work
/
num_threads
;
// 1. Define place, executor, scope
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
infer_threads
;
auto
place
=
paddle
::
platform
::
CPUPlace
();
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
infer_threads
.
emplace_back
(
new
std
::
thread
([
&
,
i
]()
{
auto
*
scope
=
new
paddle
::
framework
::
Scope
();
for
(
int
j
=
0
;
j
<
work_per_thread
;
++
j
)
{
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// 2. Initialize the inference_program and load parameters
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
inference_program
;
paddle
::
framework
::
LoDTensor
words
;
inference_program
=
InitProgram
(
&
executor
,
scope
,
dirname
,
model_combined
);
/*
if
(
FLAGS_use_mkldnn
)
{
paddle::framework::LoD lod{{0, 83}};
EnableMKLDNN
(
inference_program
);
int64_t word_dict_len = 198392;
SetupLoDTensor(&words, lod, static_cast<int64_t>(0),
static_cast<int64_t>(word_dict_len - 1));
*/
std
::
vector
<
int64_t
>
srcdata
{
784
,
784
,
1550
,
6463
,
56
,
75693
,
6189
,
784
,
784
,
1550
,
198391
,
6463
,
42468
,
4376
,
10251
,
10760
,
6189
,
297
,
396
,
6463
,
6463
,
1550
,
198391
,
6463
,
22564
,
1612
,
291
,
68
,
164
,
784
,
784
,
1550
,
198391
,
6463
,
13659
,
3362
,
42468
,
6189
,
2209
,
198391
,
6463
,
2209
,
2209
,
198391
,
6463
,
2209
,
1062
,
3029
,
1831
,
3029
,
1065
,
2281
,
100
,
11216
,
1110
,
56
,
10869
,
9811
,
100
,
198391
,
6463
,
100
,
9280
,
100
,
288
,
40031
,
1680
,
1335
,
100
,
1550
,
9280
,
7265
,
244
,
1550
,
198391
,
6463
,
1550
,
198391
,
6463
,
42468
,
4376
,
10251
,
10760
};
paddle
::
framework
::
LoD
lod
{{
0
,
srcdata
.
size
()}};
words
.
set_lod
(
lod
);
int64_t
*
pdata
=
words
.
mutable_data
<
int64_t
>
(
{
static_cast
<
int64_t
>
(
srcdata
.
size
()),
1
},
paddle
::
platform
::
CPUPlace
());
memcpy
(
pdata
,
srcdata
.
data
(),
words
.
numel
()
*
sizeof
(
int64_t
));
LOG
(
INFO
)
<<
"number of input size:"
<<
words
.
numel
();
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
words
);
paddle
::
framework
::
LoDTensor
output1
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_fetchs1
;
cpu_fetchs1
.
push_back
(
&
output1
);
// Run inference on CPU
if
(
FLAGS_prepare_vars
)
{
if
(
FLAGS_prepare_context
)
{
TestInference
<
paddle
::
platform
::
CPUPlace
,
false
,
true
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
,
model_combined
,
FLAGS_use_mkldnn
);
}
else
{
TestInference
<
paddle
::
platform
::
CPUPlace
,
false
,
false
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
,
model_combined
,
FLAGS_use_mkldnn
);
}
}
else
{
if
(
FLAGS_prepare_context
)
{
TestInference
<
paddle
::
platform
::
CPUPlace
,
true
,
true
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
,
model_combined
,
FLAGS_use_mkldnn
);
}
else
{
TestInference
<
paddle
::
platform
::
CPUPlace
,
true
,
false
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
,
FLAGS_repeat
,
model_combined
,
FLAGS_use_mkldnn
);
}
}
LOG
(
INFO
)
<<
output1
.
lod
();
LOG
(
INFO
)
<<
output1
.
dims
();
}
}));
}
}
auto
start_ms
=
get_current_ms
();
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
if
(
FLAGS_num_threads
>
1
)
{
infer_threads
[
i
]
->
join
();
test_multi_threads
();
}
else
{
if
(
FLAGS_prepare_vars
)
{
executor
.
CreateVariables
(
*
inference_program
,
scope
,
0
);
}
// always prepare context and burning first time
std
::
unique_ptr
<
paddle
::
framework
::
ExecutorPrepareContext
>
ctx
;
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
// preapre fetch
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
inference_program
->
GetFetchTargetNames
();
PADDLE_ENFORCE_EQ
(
fetch_target_names
.
size
(),
1UL
);
std
::
map
<
std
::
string
,
paddle
::
framework
::
LoDTensor
*>
fetch_targets
;
paddle
::
framework
::
LoDTensor
outtensor
;
fetch_targets
[
fetch_target_names
[
0
]]
=
&
outtensor
;
// prepare feed
const
std
::
vector
<
std
::
string
>&
feed_target_names
=
inference_program
->
GetFeedTargetNames
();
PADDLE_ENFORCE_EQ
(
feed_target_names
.
size
(),
1UL
);
std
::
map
<
std
::
string
,
const
paddle
::
framework
::
LoDTensor
*>
feed_targets
;
// for data and run
auto
start_ms
=
get_current_ms
();
for
(
size_t
i
=
0
;
i
<
datasets
.
size
();
++
i
)
{
feed_targets
[
feed_target_names
[
0
]]
=
&
(
datasets
[
i
]);
executor
.
RunPreparedContext
(
ctx
.
get
(),
scope
,
&
feed_targets
,
&
fetch_targets
,
!
FLAGS_prepare_vars
);
}
auto
stop_ms
=
get_current_ms
();
LOG
(
INFO
)
<<
"Total infer time: "
<<
(
stop_ms
-
start_ms
)
/
1000.0
/
60
<<
" min, avg time per seq: "
<<
(
stop_ms
-
start_ms
)
/
datasets
.
size
()
<<
" ms"
;
}
}
auto
stop_ms
=
get_current_ms
();
delete
scope
;
LOG
(
INFO
)
<<
"total: "
<<
stop_ms
-
start_ms
<<
" ms"
;
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录