Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4ce39796
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
4ce39796
编写于
1月 27, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix unit test and c++ code
上级
ae0ea541
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
30 addition
and
33 deletion
+30
-33
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+21
-23
python/paddle/v2/fluid/tests/test_layer_norm_op.py
python/paddle/v2/fluid/tests/test_layer_norm_op.py
+9
-10
未找到文件。
paddle/operators/layer_norm_op.cc
浏览文件 @
4ce39796
...
@@ -233,39 +233,37 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
...
@@ -233,39 +233,37 @@ class LayerNormGradKernel<platform::CPUDeviceContext, T>
if
(
d_x
)
{
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
triple_product
=
[](
T
ele
)
{
return
ele
*
ele
;
};
auto
triple_product_func
=
[](
T
ele
)
{
return
ele
*
ele
*
ele
;
};
auto
neg_inv_std
=
[](
T
ele
)
{
return
-
std
::
sqrt
(
1
/
ele
);
};
auto
scale_func
=
[
scale_data
](
T
ele
)
{
return
ele
*
scale_data
;
};
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
auto
inv_std_scale_func
=
[
scale_data
](
T
ele
)
{
auto
inv_std_scale_func
=
[
scale_data
](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
return
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
};
auto
neg_inv_std_scale_func
=
[
scale_data
](
T
ele
)
{
return
-
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
// dy_dx
// dy_dx
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_scale_func
)
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_scale_func
)
.
replicate
(
1
,
right
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
);
.
cwiseProduct
(
d_y_map
);
// dy_dmean_dx
// dy_dmean_dx
auto
dmean_end
=
var_map
.
unaryExpr
(
neg_inv_std_scale_func
)
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
.
replicate
(
1
,
right
)
var_map
.
unaryExpr
(
inv_std_scale_func
)
.
cwiseProduct
(
d_y_map
)
.
replicate
(
1
,
right
)
.
rowwise
()
.
cwiseProduct
(
d_y_map
)
.
sum
();
.
rowwise
()
auto
dx_mean
=
(
T
(
1.0
)
/
right
)
*
dmean_end
.
replicate
(
1
,
right
);
.
sum
()
.
replicate
(
1
,
right
);
// dy_var_dx
// dy_var_dx
auto
dvar_end_0
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
)
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
rowwise
()
.
sum
();
.
sum
();
auto
dvar_end
=
var_map
.
unaryExpr
(
neg_inv_std
)
auto
dvar_end
=
var_map
.
unaryExpr
(
inv_std_func
)
.
unaryExpr
(
triple_product
)
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_0
);
.
cwiseProduct
(
dvar_end_part
)
auto
dx_var
=
(
T
(
1.0
)
/
right
)
*
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
dvar_end
.
replicate
(
1
,
right
));
.
cwiseProduct
(
dvar_end
)
.
unaryExpr
(
scale_func
);
// d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
// - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
}
...
...
python/paddle/v2/fluid/tests/test_layer_norm_op.py
浏览文件 @
4ce39796
...
@@ -52,18 +52,19 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, epsilon):
...
@@ -52,18 +52,19 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, epsilon):
D
=
reduce
(
mul
,
x_shape
,
1
)
/
N
D
=
reduce
(
mul
,
x_shape
,
1
)
/
N
grad_y
.
shape
=
[
N
,
D
]
grad_y
.
shape
=
[
N
,
D
]
x
.
shape
=
[
N
,
D
]
x
.
shape
=
[
N
,
D
]
grad_offset
=
np
.
sum
(
grad_y
)
mean
.
shape
=
[
N
,
1
]
mean
.
shape
=
[
N
,
1
]
var
.
shape
=
[
N
,
1
]
var
.
shape
=
[
N
,
1
]
grad_scale
=
np
.
sum
(((
x
-
mean
)
*
np
.
sqrt
(
1
/
var
))
*
grad_y
)
d_scale
=
np
.
sum
(
grad_y
).
reshape
([
1
,
])
d_bias
=
np
.
sum
(((
x
-
mean
)
*
np
.
sqrt
(
1
/
var
))
*
grad_y
).
reshape
([
1
,
])
dx_end
=
np
.
sqrt
(
1.0
/
var
)
*
grad_y
dx_end
=
np
.
sqrt
(
1.0
/
var
)
*
grad_y
d_mean_0
=
np
.
sum
(
-
np
.
sqrt
(
1.0
/
var
)
*
grad_y
,
axis
=
1
).
reshape
([
N
,
1
])
d_mean_0
=
np
.
sum
(
-
np
.
sqrt
(
1.0
/
var
)
*
grad_y
,
axis
=
1
).
reshape
([
N
,
1
])
d_mean_1
=
np
.
sum
(
-
1.0
/
var
*
(
x
-
mean
)
*
grad_y
,
axis
=
1
).
reshape
(
#
d_mean_1 = np.sum(-1.0 / var * (x - mean) * grad_y, axis=1).reshape(
[
N
,
1
])
*
(
-
1.0
/
D
*
np
.
sqrt
(
1.0
/
var
)
*
#
[N, 1]) * (-1.0 / D * np.sqrt(1.0 / var) *
np
.
sum
(
x
-
mean
,
axis
=
1
).
reshape
([
N
,
1
])).
reshape
([
N
,
1
])
#
np.sum(x - mean, axis=1).reshape([N, 1])).reshape([N, 1])
d_mean
=
1.0
/
D
*
(
d_mean_0
+
d_mean_1
)
d_mean
=
1.0
/
D
*
(
d_mean_0
)
d_std
=
np
.
sum
(
-
1.0
/
var
*
(
x
-
mean
)
*
grad_y
,
axis
=
1
).
reshape
([
N
,
1
])
*
(
d_std
=
np
.
sum
(
-
1.0
/
var
*
(
x
-
mean
)
*
grad_y
,
axis
=
1
).
reshape
([
N
,
1
])
*
(
1.0
/
D
*
np
.
sqrt
(
1.0
/
var
).
reshape
([
N
,
1
])
*
(
x
-
mean
))
1.0
/
D
*
np
.
sqrt
(
1.0
/
var
).
reshape
([
N
,
1
])
*
(
x
-
mean
))
...
@@ -73,7 +74,7 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, epsilon):
...
@@ -73,7 +74,7 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, epsilon):
grad_y
.
shape
=
x_shape
grad_y
.
shape
=
x_shape
x
.
shape
=
x_shape
x
.
shape
=
x_shape
return
grad_x
,
grad_scale
,
grad_offset
return
grad_x
,
d_bias
,
d_scale
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
...
@@ -144,7 +145,7 @@ class TestLayerNormdOp(OpTest):
...
@@ -144,7 +145,7 @@ class TestLayerNormdOp(OpTest):
epsilon
=
0.00001
epsilon
=
0.00001
x_shape
=
shape
x_shape
=
shape
scale_shape
=
[
1
]
scale_shape
=
[
1
]
np
.
random
.
random
(
123
)
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
...
@@ -154,7 +155,6 @@ class TestLayerNormdOp(OpTest):
...
@@ -154,7 +155,6 @@ class TestLayerNormdOp(OpTest):
x_val
,
scale_val
,
bias_val
,
epsilon
)
x_val
,
scale_val
,
bias_val
,
epsilon
)
# for gradient test
# for gradient test
# y_grad = np.ones(x_shape).astype(np.float32) * 0.00277778
y_grad
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
y_grad
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_layer_norm_grad
(
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_layer_norm_grad
(
...
@@ -229,7 +229,6 @@ class TestLayerNormdOp(OpTest):
...
@@ -229,7 +229,6 @@ class TestLayerNormdOp(OpTest):
for
place
in
places
:
for
place
in
places
:
test_with_place
(
place
,
[
2
,
3
,
4
,
5
])
test_with_place
(
place
,
[
2
,
3
,
4
,
5
])
test_with_place
(
place
,
[
2
,
3
])
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录