Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4ac136a4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4ac136a4
编写于
10月 26, 2022
作者:
W
Wenyu
提交者:
GitHub
10月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[WIP] Add mask rcnn and yolo in vitdet (#7187)
* fix fpn * add vitdet mask and yolo * add vityolo
上级
995b5067
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
311 addition
and
7 deletion
+311
-7
configs/vitdet/_base_/faster_rcnn_reader.yml
configs/vitdet/_base_/faster_rcnn_reader.yml
+0
-0
configs/vitdet/_base_/mask_rcnn_reader.yml
configs/vitdet/_base_/mask_rcnn_reader.yml
+41
-0
configs/vitdet/_base_/optimizer_base_30e.yml
configs/vitdet/_base_/optimizer_base_30e.yml
+0
-0
configs/vitdet/_base_/ppyoloe_reader.yml
configs/vitdet/_base_/ppyoloe_reader.yml
+40
-0
configs/vitdet/cascade_rcnn_vit_base_hrfpn_cae_1x_coco.yml
configs/vitdet/cascade_rcnn_vit_base_hrfpn_cae_1x_coco.yml
+1
-1
configs/vitdet/mask_rcnn_vit_base_hrfpn_cae_1x_coco.yml
configs/vitdet/mask_rcnn_vit_base_hrfpn_cae_1x_coco.yml
+135
-0
configs/vitdet/ppyoloe_vit_base_csppan_cae_30e_coco.yml
configs/vitdet/ppyoloe_vit_base_csppan_cae_30e_coco.yml
+78
-0
ppdet/modeling/backbones/vision_transformer.py
ppdet/modeling/backbones/vision_transformer.py
+16
-6
未找到文件。
configs/vitdet/_base_/reader.yml
→
configs/vitdet/_base_/
faster_rcnn_
reader.yml
浏览文件 @
4ac136a4
文件已移动
configs/vitdet/_base_/mask_rcnn_reader.yml
0 → 100644
浏览文件 @
4ac136a4
worker_num
:
2
TrainReader
:
sample_transforms
:
-
Decode
:
{}
# - RandomResizeCrop: {resizes: [400, 500, 600], cropsizes: [[384, 600], ], prob: 0.5}
-
RandomResize
:
{
target_size
:
[[
640
,
1333
],
[
672
,
1333
],
[
704
,
1333
],
[
736
,
1333
],
[
768
,
1333
],
[
800
,
1333
]],
interp
:
2
,
keep_ratio
:
True
}
-
RandomFlip
:
{
prob
:
0.5
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
true
drop_last
:
true
collate_batch
:
false
use_shared_memory
:
true
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
800
,
1333
],
keep_ratio
:
True
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
[
800
,
1333
],
keep_ratio
:
True
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
configs/vitdet/_base_/optimizer_base_30e.yml
0 → 100644
浏览文件 @
4ac136a4
configs/vitdet/_base_/ppyoloe_reader.yml
0 → 100644
浏览文件 @
4ac136a4
worker_num
:
4
eval_height
:
&eval_height
640
eval_width
:
&eval_width
640
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
RandomDistort
:
{}
-
RandomExpand
:
{
fill_value
:
[
123.675
,
116.28
,
103.53
]}
-
RandomCrop
:
{}
-
RandomFlip
:
{}
batch_transforms
:
-
BatchRandomResize
:
{
target_size
:
[
320
,
352
,
384
,
416
,
448
,
480
,
512
,
544
,
576
,
608
,
640
,
672
,
704
,
736
,
768
],
random_size
:
True
,
random_interp
:
True
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
mean
:
[
0.
,
0.
,
0.
],
std
:
[
1.
,
1.
,
1.
],
norm_type
:
none
}
-
Permute
:
{}
-
PadGT
:
{}
batch_size
:
2
shuffle
:
true
drop_last
:
true
use_shared_memory
:
true
collate_batch
:
true
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
*eval_size
,
keep_ratio
:
False
,
interp
:
2
}
-
NormalizeImage
:
{
mean
:
[
0.
,
0.
,
0.
],
std
:
[
1.
,
1.
,
1.
],
norm_type
:
none
}
-
Permute
:
{}
batch_size
:
2
TestReader
:
inputs_def
:
image_shape
:
[
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
*eval_size
,
keep_ratio
:
False
,
interp
:
2
}
-
NormalizeImage
:
{
mean
:
[
0.
,
0.
,
0.
],
std
:
[
1.
,
1.
,
1.
],
norm_type
:
none
}
-
Permute
:
{}
batch_size
:
1
configs/vitdet/cascade_rcnn_vit_base_hrfpn_cae_1x_coco.yml
浏览文件 @
4ac136a4
...
...
@@ -2,7 +2,7 @@
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
./_base_/reader.yml'
,
'
./_base_/
faster_rcnn_
reader.yml'
,
'
./_base_/optimizer_base_1x.yml'
]
...
...
configs/vitdet/mask_rcnn_vit_base_hrfpn_cae_1x_coco.yml
0 → 100644
浏览文件 @
4ac136a4
_BASE_
:
[
'
../datasets/coco_instance.yml'
,
'
../runtime.yml'
,
'
./_base_/mask_rcnn_reader.yml'
,
'
./_base_/optimizer_base_1x.yml'
]
weights
:
output/mask_rcnn_vit_base_hrfpn_cae_1x_coco/model_final
# runtime
log_iter
:
100
snapshot_epoch
:
1
norm_type
:
sync_bn
use_fused_allreduce_gradients
:
&use_checkpoint
False
architecture
:
MaskRCNN
MaskRCNN
:
backbone
:
VisionTransformer
neck
:
HRFPN
rpn_head
:
RPNHead
bbox_head
:
BBoxHead
mask_head
:
MaskHead
# post process
bbox_post_process
:
BBoxPostProcess
mask_post_process
:
MaskPostProcess
VisionTransformer
:
patch_size
:
16
embed_dim
:
768
depth
:
12
num_heads
:
12
mlp_ratio
:
4
qkv_bias
:
True
drop_rate
:
0.0
drop_path_rate
:
0.2
init_values
:
0.1
final_norm
:
False
use_rel_pos_bias
:
False
use_sincos_pos_emb
:
True
epsilon
:
0.000001
# 1e-6
out_indices
:
[
3
,
5
,
7
,
11
]
with_fpn
:
True
use_checkpoint
:
*use_checkpoint
pretrained
:
https://bj.bcebos.com/v1/paddledet/models/pretrained/vit_base_cae_pretrained.pdparams
HRFPN
:
out_channel
:
256
use_bias
:
True
RPNHead
:
anchor_generator
:
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
anchor_sizes
:
[[
32
],
[
64
],
[
128
],
[
256
],
[
512
]]
strides
:
[
4
,
8
,
16
,
32
,
64
]
rpn_target_assign
:
batch_size_per_im
:
256
fg_fraction
:
0.5
negative_overlap
:
0.3
positive_overlap
:
0.7
use_random
:
True
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
1000
topk_after_collect
:
True
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
loss_rpn_bbox
:
SmoothL1Loss
SmoothL1Loss
:
beta
:
0.1111111111111111
BBoxHead
:
head
:
XConvNormHead
roi_extractor
:
resolution
:
7
sampling_ratio
:
0
aligned
:
True
bbox_assigner
:
BBoxAssigner
loss_normalize_pos
:
True
bbox_loss
:
GIoULoss
BBoxAssigner
:
batch_size_per_im
:
512
bg_thresh
:
0.5
fg_thresh
:
0.5
fg_fraction
:
0.25
use_random
:
True
XConvNormHead
:
num_convs
:
4
norm_type
:
bn
GIoULoss
:
loss_weight
:
10.
reduction
:
'
none'
eps
:
0.000001
BBoxPostProcess
:
decode
:
RCNNBox
nms
:
name
:
MultiClassNMS
keep_top_k
:
100
score_threshold
:
0.05
nms_threshold
:
0.5
MaskHead
:
head
:
MaskFeat
roi_extractor
:
resolution
:
14
sampling_ratio
:
0
aligned
:
True
mask_assigner
:
MaskAssigner
share_bbox_feat
:
False
MaskFeat
:
num_convs
:
4
out_channel
:
256
norm_type
:
~
MaskAssigner
:
mask_resolution
:
28
MaskPostProcess
:
binary_thresh
:
0.5
configs/vitdet/ppyoloe_vit_base_csppan_cae_30e_coco.yml
0 → 100644
浏览文件 @
4ac136a4
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
./_base_/ppyoloe_reader.yml'
,
'
./_base_/optimizer_base_30e.yml'
]
weights
:
output/ppyoloe_vit_base_csppan_cae_30e_coco/model_final
snapshot_epoch
:
2
log_iter
:
100
use_ema
:
true
ema_decay
:
0.9999
ema_skip_names
:
[
'
yolo_head.proj_conv.weight'
,
'
backbone.pos_embed'
]
custom_black_list
:
[
'
reduce_mean'
]
use_fused_allreduce_gradients
:
&use_checkpoint
False
architecture
:
YOLOv3
norm_type
:
sync_bn
YOLOv3
:
backbone
:
VisionTransformer
neck
:
YOLOCSPPAN
yolo_head
:
PPYOLOEHead
post_process
:
~
VisionTransformer
:
patch_size
:
16
embed_dim
:
768
depth
:
12
num_heads
:
12
mlp_ratio
:
4
qkv_bias
:
True
drop_rate
:
0.0
drop_path_rate
:
0.2
init_values
:
0.1
final_norm
:
False
use_rel_pos_bias
:
False
use_sincos_pos_emb
:
True
epsilon
:
0.000001
# 1e-6
out_indices
:
[
11
,
]
with_fpn
:
True
num_fpn_levels
:
3
out_with_norm
:
False
use_checkpoint
:
*use_checkpoint
pretrained
:
https://bj.bcebos.com/v1/paddledet/models/pretrained/vit_base_cae_pretrained.pdparams
YOLOCSPPAN
:
in_channels
:
[
768
,
768
,
768
]
act
:
'
silu'
PPYOLOEHead
:
fpn_strides
:
[
8
,
16
,
32
]
in_channels
:
[
768
,
768
,
768
]
static_assigner_epoch
:
-1
grid_cell_scale
:
5.0
grid_cell_offset
:
0.5
use_varifocal_loss
:
True
loss_weight
:
{
class
:
1.0
,
iou
:
2.5
,
dfl
:
0.5
}
static_assigner
:
name
:
ATSSAssigner
topk
:
9
assigner
:
name
:
TaskAlignedAssigner
topk
:
13
alpha
:
1.0
beta
:
6.0
nms
:
name
:
MultiClassNMS
nms_top_k
:
1000
keep_top_k
:
300
score_threshold
:
0.01
nms_threshold
:
0.7
ppdet/modeling/backbones/vision_transformer.py
浏览文件 @
4ac136a4
...
...
@@ -340,6 +340,7 @@ class VisionTransformer(nn.Layer):
use_abs_pos_emb
=
False
,
use_sincos_pos_emb
=
True
,
with_fpn
=
True
,
num_fpn_levels
=
4
,
use_checkpoint
=
False
,
**
args
):
super
().
__init__
()
...
...
@@ -350,6 +351,8 @@ class VisionTransformer(nn.Layer):
self
.
use_sincos_pos_emb
=
use_sincos_pos_emb
self
.
use_rel_pos_bias
=
use_rel_pos_bias
self
.
final_norm
=
final_norm
self
.
out_indices
=
out_indices
self
.
num_fpn_levels
=
num_fpn_levels
if
use_checkpoint
:
paddle
.
seed
(
0
)
...
...
@@ -415,14 +418,15 @@ class VisionTransformer(nn.Layer):
assert
len
(
out_indices
)
<=
4
,
''
self
.
out_indices
=
out_indices
self
.
out_channels
=
[
embed_dim
for
_
in
range
(
len
(
out_indices
)
)]
self
.
out_strides
=
[
4
,
8
,
16
,
32
][
-
len
(
out_indices
)
:]
if
with_fpn
else
[
8
for
_
in
range
(
len
(
out_indices
))
self
.
out_channels
=
[
embed_dim
for
_
in
range
(
num_fpn_levels
)]
self
.
out_strides
=
[
4
,
8
,
16
,
32
][
-
num_fpn_levels
:]
if
with_fpn
else
[
patch_size
for
_
in
range
(
len
(
out_indices
))
]
self
.
norm
=
Identity
()
if
self
.
with_fpn
:
assert
num_fpn_levels
<=
4
,
''
self
.
init_fpn
(
embed_dim
=
embed_dim
,
patch_size
=
patch_size
,
)
...
...
@@ -611,9 +615,15 @@ class VisionTransformer(nn.Layer):
feats
.
append
(
xp
)
if
self
.
with_fpn
:
fpns
=
[
self
.
fpn1
,
self
.
fpn2
,
self
.
fpn3
,
self
.
fpn4
]
for
i
in
range
(
len
(
feats
)):
feats
[
i
]
=
fpns
[
i
](
feats
[
i
])
fpns
=
[
self
.
fpn1
,
self
.
fpn2
,
self
.
fpn3
,
self
.
fpn4
][
-
self
.
num_fpn_levels
:]
assert
len
(
fpns
)
==
len
(
feats
)
or
len
(
feats
)
==
1
,
''
outputs
=
[]
for
i
,
m
in
enumerate
(
fpns
):
outputs
.
append
(
m
(
feats
[
i
]
if
len
(
feats
)
==
len
(
fpns
)
else
feats
[
-
1
]))
return
outputs
return
feats
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录