Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4a8559c0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a8559c0
编写于
2月 09, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments and code refine
上级
5f15037e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
72 addition
and
89 deletion
+72
-89
paddle/operators/prior_box_op.cc
paddle/operators/prior_box_op.cc
+4
-4
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+68
-85
未找到文件。
paddle/operators/prior_box_op.cc
浏览文件 @
4a8559c0
...
...
@@ -51,11 +51,11 @@ class PriorBoxOp : public framework::OperatorWithKernel {
if
(
max_sizes
.
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
"The number of min_size and max_size must be equal."
);
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
num_priors
+=
max_sizes
.
size
();
for
(
size_t
i
=
0
;
i
<
max_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
"max_size[%d] must be greater than min_size[%d]."
,
i
,
i
);
num_priors
+=
1
;
}
}
...
...
@@ -125,13 +125,13 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
true
);
AddAttr
<
float
>
(
"step_w"
,
"Prior boxes step across width, 0 for auto calculation."
)
"Prior boxes step across width, 0
.0
for auto calculation."
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_w
)
{
PADDLE_ENFORCE_GE
(
step_w
,
0.0
,
"step_w should be larger than 0."
);
});
AddAttr
<
float
>
(
"step_h"
,
"Prior boxes step across height, 0 for auto calculation."
)
"Prior boxes step across height, 0
.0
for auto calculation."
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_h
)
{
PADDLE_ENFORCE_GE
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
4a8559c0
...
...
@@ -66,7 +66,6 @@ __all__ = [
'nce'
,
'beam_search'
,
'row_conv'
,
'reshape'
,
'reshape_with_axis'
,
'multiplex'
,
'prior_box'
,
...
...
@@ -3103,12 +3102,11 @@ def reshape_with_axis(input, axis):
"""
**ReshapeWithAxis Layer**
According to the axis to merge the adjacent dim of input. Currently, the axis of
reshape_with_axis must be a scalar.
ReshapeWithAxis is used to merge adjacent dimensions according to axis.
Args:
input(variable): The input tensor.
axis(list):
According to the axis to merge the adjacent dim
.
axis(list):
The axis which is used to merge the adjacent dimensions
.
Returns:
Variable: A tensor variable.
...
...
@@ -3117,7 +3115,7 @@ def reshape_with_axis(input, axis):
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape_with_axis(input=x, axis=
2
)
reshaped = fluid.layers.reshape_with_axis(input=x, axis=
[2]
)
reshaped.shape
>> [-1, 1024]
reshaped = fluid.layers.reshape_with_axis(input=x, axis=[1,3])
...
...
@@ -3151,46 +3149,17 @@ def reshape_with_axis(input, axis):
return
out
def
reshape
(
input
,
new_shape
):
"""
**Reshape Layer**
Reshape the shape of input according to new_dim.
Args:
input(variable): The input tensor.
new_shape(list): The new shape of input.
Returns:
Variable: A tensor variable.
Examples:
.. code-block:: python
x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
reshaped = fluid.layers.reshape(input=x, new_shape=[-1, 1024])
"""
helper
=
LayerHelper
(
'reshape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'reshape'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'shape'
:
new_dim
})
return
out
def
prior_box
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
,
clip
,
step_w
,
step_h
,
offset
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
"""
**Prior_box**
...
...
@@ -3202,27 +3171,33 @@ def prior_box(input,
sequence according to the aspect_ratios.
Args:
input(variable): The input feature data of PriorBox, the layout is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
input(variable): The input feature data of PriorBox,
the layout is NCHW.
image(variable): The input image data of PriorBox, the
layout is NCHW.
min_sizes(list): the min sizes of generated prior boxes.
max_sizes(list): the max sizes of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
variance(list): the variances to be encoded in prior boxes.
flip(bool): Whether to flip aspect ratios.
clip(bool): Whether to clip out-of-boundary boxes.
step_w(list): Prior boxes step across width, 0 for auto calculation.
step_h(list): Prior boxes step across height, 0 for auto calculation.
offset(float): Prior boxes center offset.
name(str): Name of the prior box layer.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False)): Whether to clip
out-of-boundary boxes.
step_w(int, optional, default=0.0): Prior boxes step across
width, 0.0 for auto calculation.
step_h(int, optional, default=0.0): Prior boxes step across
height, 0.0 for auto calculation.
offset(float, optional, default=0.5): Prior boxes center offset.
name(str, optional, default=None): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position.
of input, num_priors is the box count of each position. Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [H, W, num_priors, 4]. H is the height of input, W is the width
of input, num_priors is the box count of each position.
of input, num_priors is the box count of each position.
Where num_priors =
len(aspect_ratios) * len(min_sizes) + len(max_sizes)
Examples:
.. code-block:: python
...
...
@@ -3259,70 +3234,78 @@ def prior_box(input,
return
box
,
var
def
prior_boxes
(
input
_layer
s
,
def
prior_boxes
(
inputs
,
image
,
min_ratio
,
max_ratio
,
aspect_ratios
,
min_dim
,
base_size
,
steps
=
None
,
step_w
=
None
,
step_h
=
None
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
Tru
e
,
clip
=
Tru
e
,
flip
=
Fals
e
,
clip
=
Fals
e
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
Each position of the inputs produces many prior boxes respectly, the number
of prior boxes which is produced by inputs respectly is determined by
the count of min_ratio, max_ratio and aspect_ratios, The size of the
box is in range(min_ratio, max_ratio) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input(list): The list of input variables, the format of all variables is NCHW.
input
s
(list): The list of input variables, the format of all variables is NCHW.
image(variable): The input image data of PriorBoxOp, the layout is NCHW.
min_ratio(
list): the min sizes
of generated prior boxes.
max_ratio(
list): the max sizes
of generated prior boxes.
min_ratio(
int): the min ratio
of generated prior boxes.
max_ratio(
int): the max ratio
of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior boxes.
min_dim(int):
step_w(list): Prior boxes step across width, 0 for auto calculation.
step_h(list): Prior boxes step across height, 0 for auto calculation.
offset(float): Prior boxes center offset.
variance(list): the variances to be encoded in prior boxes.
flip(bool): Whether to flip aspect ratios.
clip(bool): Whether to clip out-of-boundary boxes.
name(str): Name of the prior box layer.
The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size and max_size
according to min_ratio and max_ratio.
step_w(list, optional, default=None): Prior boxes step across width.
If step_w[i] == 0.0, the prior boxes step across width of the inputs[i]
will be automatically calculated.
step_h(list, optional, default=None): Prior boxes step across height,
If step_h[i] == 0.0, the prior boxes step across height of the inputs[i]
will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip aspect ratios.
clip(bool, optional, default=False): Whether to clip out-of-boundary boxes.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(variable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of input
_layer
s.
position of inputs.
Variances(variable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of input
_layer
s
position of inputs
Examples:
.. code-block:: python
prior_boxes(
input
_layer
s = [conv1, conv2, conv3, conv4, conv5, conv6],
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio =
0.2,
max_ratio =
0.9,
min_ratio =
20, # 0.20
max_ratio =
90, # 0.90
steps = [8., 16., 32., 64., 100., 300.],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
min_dim
= 300,
base_size
= 300,
offset = 0.5,
variance = [0.1,0.1,0.1,0.1],
flip=True,
clip=True)
"""
assert
isinstance
(
input
_layers
,
list
),
'input_layer
should be a list.'
num_layer
=
len
(
input
_layer
s
)
assert
isinstance
(
input
s
,
list
),
'inputs
should be a list.'
num_layer
=
len
(
inputs
)
assert
num_layer
>
2
# TODO(zcd): currently, num_layer must be bigger than two.
min_sizes
=
[]
...
...
@@ -3330,30 +3313,30 @@ def prior_boxes(input_layers,
if
num_layer
>
2
:
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
min_dim
*
ratio
/
100.
)
max_sizes
.
append
(
min_dim
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
min_dim
*
.
10
]
+
min_sizes
max_sizes
=
[
min_dim
*
.
20
]
+
max_sizes
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
step_h
:
assert
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
,
\
'step_h should be list and input
_layer
s and step_h should have same length'
'step_h should be list and inputs and step_h should have same length'
if
step_w
:
assert
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
,
\
'step_w should be list and input
_layer
s and step_w should have same length'
'step_w should be list and inputs and step_w should have same length'
if
steps
:
assert
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
,
\
'steps should be list and input
_layer
s and step_w should have same length'
'steps should be list and inputs and step_w should have same length'
step_w
=
steps
step_h
=
steps
if
aspect_ratios
:
assert
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
,
\
'aspect_ratios should be list and input
_layer
s and aspect_ratios should '
\
'aspect_ratios should be list and inputs and aspect_ratios should '
\
'have same length'
box_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
input
_layer
s
):
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
aspect_ratio
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录