提交 4a33a44f 编写于 作者: F fuchang01

analyzer bert tester

上级 f534c66d
......@@ -115,6 +115,11 @@ if (NOT EXISTS ${MOBILENET_INSTALL_DIR})
endif()
inference_analysis_api_test_with_refer_result(test_analyzer_mobilenet_transpose ${MOBILENET_INSTALL_DIR} analyzer_vis_tester.cc SERIAL)
# bert
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert")
download_model_and_data(${BERT_INSTALL_DIR} "bert_model.tar.gz" "bert_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_bert ${BERT_INSTALL_DIR} analyzer_bert_tester.cc)
# resnet50
inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
"${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz" SERIAL)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <chrono>
#include <fstream>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
DEFINE_int32(repeat, 1, "repeat");
namespace paddle {
namespace inference {
using paddle::PaddleTensor;
using paddle::contrib::AnalysisConfig;
template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
(*ss) >> (*t);
}
template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
*t = ss->str();
}
// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
std::stringstream ss;
T t;
for (auto c : line) {
if (c != sep) {
ss << c;
} else {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
if (!ss.str().empty()) {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();
template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
return paddle::PaddleDType::INT64;
}
template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
return paddle::PaddleDType::FLOAT32;
}
// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
std::vector<std::string> data;
Split(field, ':', &data);
if (data.size() < 2) return false;
std::string shape_str = data[0];
std::vector<int> shape;
Split(shape_str, ' ', &shape);
std::string mat_str = data[1];
std::vector<T> mat;
Split(mat_str, ' ', &mat);
tensor->shape = shape;
auto size =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
sizeof(T);
tensor->data.Resize(size);
std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
tensor->dtype = GetPaddleDType<T>();
return true;
}
// Parse input tensors from string
bool ParseLine(const std::string &line,
std::vector<paddle::PaddleTensor> *tensors) {
std::vector<std::string> fields;
Split(line, ';', &fields);
if (fields.size() < 5) return false;
tensors->clear();
tensors->reserve(5);
int i = 0;
// src_id
paddle::PaddleTensor src_id;
ParseTensor<int64_t>(fields[i++], &src_id);
tensors->push_back(src_id);
// pos_id
paddle::PaddleTensor pos_id;
ParseTensor<int64_t>(fields[i++], &pos_id);
tensors->push_back(pos_id);
// segment_id
paddle::PaddleTensor segment_id;
ParseTensor<int64_t>(fields[i++], &segment_id);
tensors->push_back(segment_id);
// self_attention_bias
paddle::PaddleTensor self_attention_bias;
ParseTensor<float>(fields[i++], &self_attention_bias);
tensors->push_back(self_attention_bias);
// next_segment_index
paddle::PaddleTensor next_segment_index;
ParseTensor<int64_t>(fields[i++], &next_segment_index);
tensors->push_back(next_segment_index);
return true;
}
// Print outputs to log
void PrintOutputs(const std::vector<paddle::PaddleTensor> &outputs) {
LOG(INFO) << "example_id\tcontradiction\tentailment\tneutral";
for (size_t i = 0; i < outputs.front().data.length(); i += 3) {
LOG(INFO) << (i / 3) << "\t"
<< static_cast<float *>(outputs.front().data.data())[i] << "\t"
<< static_cast<float *>(outputs.front().data.data())[i + 1]
<< "\t"
<< static_cast<float *>(outputs.front().data.data())[i + 2];
}
}
bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
if (FLAGS_infer_data.empty()) {
LOG(ERROR) << "please set input data path";
return false;
}
std::ifstream fin(FLAGS_infer_data);
std::string line;
int lineno = 0;
while (std::getline(fin, line)) {
std::vector<paddle::PaddleTensor> feed_data;
if (!ParseLine(line, &feed_data)) {
LOG(ERROR) << "Parse line[" << lineno << "] error!";
} else {
inputs->push_back(std::move(feed_data));
}
}
return true;
}
void SetConfig(contrib::AnalysisConfig *config) {
config->SetModel(FLAGS_infer_model);
}
void profile(bool use_mkldnn = false) {
contrib::AnalysisConfig config;
SetConfig(&config);
if (use_mkldnn) {
config.EnableMKLDNN();
}
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
inputs, &outputs, FLAGS_num_threads);
}
void compare(bool use_mkldnn = false) {
AnalysisConfig config;
SetConfig(&config);
std::vector<std::vector<PaddleTensor>> inputs;
LoadInputData(&inputs);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&config), inputs);
}
TEST(Analyzer_bert, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_bert, profile_mkldnn) { profile(true); }
#endif
} // namespace inference
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册