Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
49c50c9f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
49c50c9f
编写于
2月 11, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multiBox API
上级
cb4eacb1
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
251 addition
and
2 deletion
+251
-2
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+157
-2
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+33
-0
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+61
-0
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
49c50c9f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve
d
.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
...
@@ -16,8 +16,19 @@ All layers just related to the detection neural network.
...
@@ -16,8 +16,19 @@ All layers just related to the detection neural network.
"""
"""
from
..layer_helper
import
LayerHelper
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
from
..framework
import
Variable
from
layer_function_generator
import
autodoc
from
tensor
import
concat
from
ops
import
reshape
from
..nets
import
img_conv_with_bn
from
nn
import
transpose
import
math
__all__
=
[
'detection_output'
,
]
__all__
=
[
'detection_output'
,
'multi_box_head'
,
]
def
detection_output
(
scores
,
def
detection_output
(
scores
,
...
@@ -114,3 +125,147 @@ def detection_output(scores,
...
@@ -114,3 +125,147 @@ def detection_output(scores,
'nms_eta'
:
1.0
'nms_eta'
:
1.0
})
})
return
nmsed_outs
return
nmsed_outs
def
multi_box_head
(
inputs
,
num_classes
,
min_sizes
=
None
,
max_sizes
=
None
,
min_ratio
=
None
,
max_ratio
=
None
,
aspect_ratios
=
None
,
flip
=
False
,
share_location
=
True
,
kernel_size
=
1
,
pad
=
1
,
stride
=
1
,
use_batchnorm
=
False
,
base_size
=
None
,
name
=
None
):
"""
**Multi Box Head**
input many Variable, and return mbox_loc, mbox_conf
Args:
inputs(list): The list of input Variables, the format
of all Variables is NCHW.
num_classes(int): The number of calss.
min_sizes(list, optional, default=None): The length of
min_size is used to compute the the number of prior box.
If the min_size is None, it will be computed according
to min_ratio and max_ratio.
max_sizes(list, optional, default=None): The length of max_size
is used to compute the the number of prior box.
min_ratio(int): If the min_sizes is None, min_ratio and min_ratio
will be used to compute the min_sizes and max_sizes.
max_ratio(int): If the min_sizes is None, min_ratio and min_ratio
will be used to compute the min_sizes and max_sizes.
aspect_ratios(list): The number of the aspect ratios is used to
compute the number of prior box.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
flip(bool, optional, default=False): Whether to flip
aspect ratios.
name(str, optional, None): Name of the prior box layer.
Returns:
mbox_loc(Variable): the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of inputs.
mbox_conf(Variable): the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
Examples:
.. code-block:: python
"""
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
if
min_sizes
is
not
None
:
assert
len
(
inputs
)
==
len
(
min_sizes
)
if
max_sizes
is
not
None
:
assert
len
(
inputs
)
==
len
(
max_sizes
)
if
min_sizes
is
None
:
# if min_sizes is None, min_sizes and max_sizes
# will be set according to max_ratio and min_ratio
assert
max_ratio
is
not
None
and
min_ratio
is
not
None
min_sizes
=
[]
max_sizes
=
[]
num_layer
=
len
(
inputs
)
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
is
not
None
:
assert
len
(
inputs
)
==
len
(
aspect_ratios
)
mbox_locs
=
[]
mbox_confs
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
if
type
(
min_size
)
is
not
list
:
min_size
=
[
min_size
]
max_size
=
[]
if
max_sizes
is
not
None
:
max_size
=
max_sizes
[
i
]
if
type
(
max_size
)
is
not
list
:
max_size
=
[
max_size
]
if
max_size
:
assert
len
(
max_size
)
==
len
(
min_size
),
"max_size and min_size should have same length."
aspect_ratio
=
[]
if
aspect_ratios
is
not
None
:
aspect_ratio
=
aspect_ratios
[
i
]
if
type
(
aspect_ratio
)
is
not
list
:
aspect_ratio
=
[
aspect_ratio
]
num_priors_per_location
=
0
if
max_sizes
is
not
None
:
num_priors_per_location
=
len
(
min_size
)
+
len
(
aspect_ratio
)
*
len
(
min_size
)
+
len
(
max_size
)
else
:
num_priors_per_location
=
len
(
min_size
)
+
len
(
aspect_ratio
)
*
len
(
min_size
)
if
flip
:
num_priors_per_location
+=
len
(
aspect_ratio
)
*
len
(
min_size
)
# mbox_loc
num_loc_output
=
num_priors_per_location
*
4
if
share_location
:
num_loc_output
*=
num_classes
mbox_loc
=
img_conv_with_bn
(
input
=
input
,
conv_num_filter
=
num_loc_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
mbox_loc
=
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
# get the number of prior box
num_conf_output
=
num_priors_per_location
*
num_classes
conf_loc
=
img_conv_with_bn
(
input
=
input
,
conv_num_filter
=
num_conf_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
conf_loc
=
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_confs
.
append
(
conf_loc
)
return
mbox_locs
,
mbox_confs
python/paddle/v2/fluid/nets.py
浏览文件 @
49c50c9f
...
@@ -18,6 +18,7 @@ __all__ = [
...
@@ -18,6 +18,7 @@ __all__ = [
"sequence_conv_pool"
,
"sequence_conv_pool"
,
"glu"
,
"glu"
,
"scaled_dot_product_attention"
,
"scaled_dot_product_attention"
,
"img_conv_with_bn"
,
]
]
...
@@ -107,6 +108,38 @@ def img_conv_group(input,
...
@@ -107,6 +108,38 @@ def img_conv_group(input,
return
pool_out
return
pool_out
def
img_conv_with_bn
(
input
,
conv_num_filter
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_stride
=
1
,
conv_act
=
None
,
param_attr
=
None
,
conv_with_batchnorm
=
False
,
conv_batchnorm_drop_rate
=
0.0
,
use_cudnn
=
True
):
"""
Image Convolution Group, Used for vgg net.
"""
conv2d
=
layers
.
conv2d
(
input
=
input
,
num_filters
=
conv_num_filter
,
filter_size
=
conv_filter_size
,
padding
=
conv_padding
,
stride
=
conv_stride
,
param_attr
=
param_attr
,
act
=
conv_act
,
use_cudnn
=
use_cudnn
)
if
conv_with_batchnorm
:
conv2d
=
layers
.
batch_norm
(
input
=
conv2d
)
drop_rate
=
conv_batchnorm_drop_rate
if
abs
(
drop_rate
)
>
1e-5
:
conv2d
=
layers
.
dropout
(
x
=
conv2d
,
dropout_prob
=
drop_rate
)
return
conv2d
def
sequence_conv_pool
(
input
,
def
sequence_conv_pool
(
input
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
...
...
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
49c50c9f
...
@@ -13,7 +13,13 @@
...
@@ -13,7 +13,13 @@
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers.detection
as
detection
from
paddle.v2.fluid.framework
import
Program
,
program_guard
import
unittest
import
unittest
import
numpy
as
np
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.framework
import
Program
,
program_guard
...
@@ -49,5 +55,60 @@ class TestBook(unittest.TestCase):
...
@@ -49,5 +55,60 @@ class TestBook(unittest.TestCase):
print
(
str
(
program
))
print
(
str
(
program
))
class
TestMultiBoxHead
(
unittest
.
TestCase
):
def
test_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
mbox_locs
,
mbox_confs
=
self
.
multi_box_output
(
data_shape
)
# print mbox_locs.shape
# print mbox_confs.shape
# assert len(box.shape) == 2
# assert box.shape == var.shape
# assert box.shape[1] == 4
def
multi_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
fluid
.
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
fluid
.
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
fluid
.
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
mbox_locs
,
mbox_confs
=
detection
.
multi_box_head
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
num_classes
=
21
,
min_ratio
=
20
,
max_ratio
=
90
,
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
],
[
2.
]],
base_size
=
300
,
flip
=
True
)
return
mbox_locs
,
mbox_confs
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录