Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
493e1c04
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
493e1c04
编写于
8月 14, 2017
作者:
Q
qingqing01
提交者:
GitHub
8月 14, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3335 from Superjom/rnn_forward_result_test
Rnn forward result test
上级
e54ce779
a0b49a6c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
97 addition
and
21 deletion
+97
-21
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+96
-21
未找到文件。
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
493e1c04
...
...
@@ -24,3 +24,4 @@ py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py)
py_test
(
test_operator SRCS test_operator.py
)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
493e1c04
...
...
@@ -2,19 +2,74 @@ import logging
import
paddle.v2.framework.core
as
core
import
unittest
import
numpy
as
np
import
paddle.v2.framework.create_op_creation_methods
as
creation
from
paddle.v2.framework.op
import
Operator
ops
=
creation
.
op_creations
def
py_sigmoid
(
x
):
return
1.
/
(
1.
+
np
.
exp
(
-
x
))
def
create_tensor
(
scope
,
name
,
shape
):
class
PySimpleRNN
(
object
):
'''
A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm
'''
def
__init__
(
self
,
input_dim
=
30
,
batch_size
=
50
,
weight_dim
=
15
,
sent_len
=
11
):
self
.
x
=
np
.
random
.
normal
(
size
=
(
sent_len
,
batch_size
,
input_dim
))
self
.
W
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
))
self
.
U
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
))
self
.
h_boot
=
np
.
random
.
normal
(
size
=
(
batch_size
,
input_dim
))
# memories
self
.
mems
=
[
np
.
zeros
(
shape
=
(
batch_size
,
input_dim
))
for
i
in
range
(
sent_len
)
]
def
forward
(
self
):
xs
=
self
.
segment_inputs
()
for
step_id
in
range
(
self
.
x
.
shape
[
0
]):
self
.
step
(
step_id
,
xs
[
step_id
])
return
self
.
concat_outputs
()
def
segment_inputs
(
self
):
return
[
self
.
x
[
i
]
for
i
in
range
(
self
.
x
.
shape
[
0
])]
def
concat_outputs
(
self
):
return
np
.
array
(
self
.
mems
)
def
step
(
self
,
step_id
,
x
):
'''
run a step
'''
mem
=
self
.
mems
[
step_id
]
if
step_id
>
0
:
pre_mem
=
self
.
mems
[
step_id
-
1
]
else
:
pre_mem
=
self
.
h_boot
xW
=
np
.
matmul
(
x
,
self
.
W
)
hU
=
np
.
matmul
(
mem
,
self
.
U
)
sum
=
xW
+
hU
self
.
mems
[
step_id
]
=
py_sigmoid
(
sum
)
class
PySimpleRNNTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
rnn
=
PySimpleRNN
()
def
test_forward
(
self
):
output
=
self
.
rnn
.
forward
()
print
'output'
,
output
def
create_tensor
(
scope
,
name
,
shape
,
np_data
):
tensor
=
scope
.
new_var
(
name
).
get_tensor
()
tensor
.
set_dims
(
shape
)
tensor
.
set
(
np
.
random
.
random
(
shape
)
,
core
.
CPUPlace
())
tensor
.
set
(
np
_data
,
core
.
CPUPlace
())
return
tensor
class
TestR
NN
(
unittest
.
TestCase
):
class
TestR
ecurrentOp
(
unittest
.
TestCase
):
'''
Test RNNOp
...
...
@@ -28,7 +83,7 @@ class TestRNN(unittest.TestCase):
memories:
- h
outputs:
- h
- h
'''
input_dim
=
30
...
...
@@ -36,33 +91,45 @@ class TestRNN(unittest.TestCase):
weight_dim
=
15
sent_len
=
11
def
init
(
self
):
def
setUp
(
self
):
self
.
py_rnn
=
PySimpleRNN
(
self
.
input_dim
,
self
.
batch_size
,
self
.
weight_dim
,
self
.
sent_len
)
def
forward
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
create_global_variables
()
self
.
create_step_net
()
rnn_op
=
self
.
create_rnn_op
()
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
print
'infer_shape'
rnn_op
.
infer_shape
(
self
.
scope
)
rnn_op
.
run
(
self
.
scope
,
ctx
)
return
np
.
array
(
self
.
scope
.
find_var
(
"h"
).
get_tensor
())
def
create_global_variables
(
self
):
# create inlink
x_np_data
=
self
.
py_rnn
.
x
create_tensor
(
self
.
scope
,
"x"
,
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
])
create_tensor
(
self
.
scope
,
"W"
,
[
self
.
input_dim
,
self
.
input_dim
])
create_tensor
(
self
.
scope
,
"U"
,
[
self
.
input_dim
,
self
.
input_dim
])
create_tensor
(
self
.
scope
,
"h_boot"
,
[
self
.
batch_size
,
self
.
input_dim
])
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
x_np_data
)
W_np_data
=
self
.
py_rnn
.
W
create_tensor
(
self
.
scope
,
"W"
,
[
self
.
input_dim
,
self
.
input_dim
],
W_np_data
)
U_np_data
=
self
.
py_rnn
.
U
create_tensor
(
self
.
scope
,
"U"
,
[
self
.
input_dim
,
self
.
input_dim
],
U_np_data
)
h_boot_np_data
=
self
.
py_rnn
.
h_boot
create_tensor
(
self
.
scope
,
"h_boot"
,
[
self
.
batch_size
,
self
.
input_dim
],
h_boot_np_data
)
self
.
scope
.
new_var
(
"step_scopes"
)
self
.
scope
.
new_var
(
"h@alias"
)
self
.
scope
.
new_var
(
"h"
)
def
create_rnn_op
(
self
):
# create RNNOp
rnnop
=
ops
.
recurrent_op
(
rnnop
=
Operator
(
"recurrent_op"
,
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
...
...
@@ -81,17 +148,25 @@ class TestRNN(unittest.TestCase):
var
=
self
.
scope
.
new_var
(
"stepnet"
)
stepnet
=
var
.
get_net
()
x_fc_op
=
ops
.
fc
(
X
=
"x@alias"
,
W
=
"W"
,
Y
=
"Wx"
)
h_fc_op
=
ops
.
fc
(
X
=
"h@pre"
,
W
=
"U"
,
Y
=
"Uh"
)
sum_op
=
ops
.
add_two
(
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
ops
.
sigmoid
(
X
=
"sum"
,
Y
=
"h@alias"
)
# x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx")
# h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh")
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add_two"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
add_op
(
op
)
stepnet
.
complete_add_op
(
True
)
def
test_recurrent
(
self
):
self
.
init
()
def
test_forward
(
self
):
print
'test recurrent op forward'
pd_output
=
self
.
forward
()
py_output
=
self
.
py_rnn
.
forward
()
print
'pd_output'
,
pd_output
print
print
'py_output'
,
py_output
self
.
assertEqual
(
pd_output
.
shape
,
py_output
.
shape
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录