提交 48556ba3 编写于 作者: G gongweibao

add block_expand_op

上级 23407e7a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/block_expand_op.h"
namespace paddle {
namespace operators {
class BlockExpandOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("block"),
"Input(block) of BlockExpandOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("padding"),
"Input(padding) of BlockExpandOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("stride"),
"Input(stride) of BlockExpandOp should not be null.");
// ctx->SetOutputDim("Out", {1});
}
};
class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BlockExpandOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("block", "The input of block_expand op");
AddOutput("stride", "The output of block_expand op");
AddComment(R"DOC(
Expand feature map to minibatch matrix.
- matrix width is: blockH_ * blockW_ * channels_
- matirx height is: outputH_ * outputW_
outputH\_ = 1 + (2paddingH\_ + imgSizeH\_ - blockH\_ + strideH\_ - 1) /
strideH\_ \\
outputW\_ = 1 + (2paddingW\_ + imgSizeW\_ - blockW\_ + strideW\_ - 1) /
strideW\_
The expand method is the same with ExpandConvLayer, but saved the transposed
value. After expanding, output_.sequenceStartPositions will store timeline.
The number of time steps are outputH_outputW_ and the dimension of each
time step is blockH_ * blockW_ * channels_. This layer can be used after
convolution neural network, and before recurrent neural network.
)DOC");
}
};
class BlockExpandGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(block_expand, ops::BlockExpandOp, ops::BlockExpandOpMaker,
block_expand_grad, ops::BlockExpandOpGrad);
REGISTER_OP_CPU_KERNEL(
block_expand, ops::BlockExpanddKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
block_expand_grad,
ops::BlockExpandGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/math/math_function.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class BlockExpandKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
using namespace framework;
const Tensor* input = context.Input<Tensor>("input");
const Tensor* filter = context.Input<Tensor>("filter");
const Tensor* stride = context.Input<Tensor>("stride");
const Tensor* padding = context.Input<Tensor>("padding");
Tensor* out = context.Output<Tensor>("Out");
auto input_dim = input->dims();
size_t N = input_dim[0];
size_t C = input_dim[1];
PADDLE_ENFORCE_GE(N, 1, "Input batchsize must >= 1.");
PADDLE_ENFORCE_EQ(input_dim.size(), 4, "Input format must be NCHW.");
size_t input_height = input_dim[2];
size_t input_height = input_dim[3];
size_t filter_height = filter[0];
size_t filter_width = filter[1];
size_t output_height = 1 +
(input_height + 2 * padding_height - block_height() +
stride_height - 1) /
stride_height;
size_t output_width =
1 +
(input_width + 2 * padding_width - block_width() + stride_width - 1) /
stride_width;
Tensor col;
if (clo_format = KCFO) {
col.Resize(
{N, C, filter_height, filter_width, output_height, output_width});
} else {
col.Resize(
{N, output_height, output_width, C, filter_height, filter_width});
}
for (size_t i = 0; i < N; i++) {
Im2ColFunctor<col_format, place, T>(ctx, one_img, col, stride[0],
stride[1], padding[0], padding[1]);
}
}
};
template <typename Place, typename T>
class BlockExpandGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
/*
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
const Tensor* x = ctx.Input<Tensor>("X");
const Tensor* y = ctx.Input<Tensor>("Y");
*/
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册