Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
479c861b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
479c861b
编写于
1月 23, 2018
作者:
C
Cao Ying
提交者:
GitHub
1月 23, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7726 from lcy-seso/fix_rendering_error_of_transpose_op
fix rendering error of transpose operator and add wrapper.
上级
6d2cfe92
dcb5a1ed
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
132 addition
and
61 deletion
+132
-61
paddle/operators/transpose_op.cc
paddle/operators/transpose_op.cc
+23
-28
python/paddle/v2/dataset/wmt16.py
python/paddle/v2/dataset/wmt16.py
+9
-8
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+84
-19
python/paddle/v2/fluid/layers/ops.py
python/paddle/v2/fluid/layers/ops.py
+14
-4
python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py
...dle/v2/fluid/tests/book/test_understand_sentiment_lstm.py
+2
-2
未找到文件。
paddle/operators/transpose_op.cc
浏览文件 @
479c861b
...
...
@@ -59,44 +59,39 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor)
The input tensor, tensors with rank at most 6 are supported
"
);
AddOutput
(
"Out"
,
"(Tensor)The output tensor"
);
"(Tensor)
The input tensor, tensors with rank up to 6 are supported.
"
);
AddOutput
(
"Out"
,
"(Tensor)The output tensor
.
"
);
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"(vector<int>)A list of values, and the size of the list should be "
"the same with the input tensor rank
, the tensor will
"
"
permute the axes according the the values given
"
);
"(vector<int>)
A list of values, and the size of the list should be "
"the same with the input tensor rank
. This operator permutes the input
"
"
tensor's axes according to the values given.
"
);
AddComment
(
R"DOC(
Transpose Operator.
The input tensor will be permuted according to the ax
is valu
es given.
The
op functions is similar to how numpy.transpose works in python
.
The input tensor will be permuted according to the axes given.
The
behavior of this operator is similar to how `numpy.transpose` works
.
For example:
- suppose the input `X` is a 2-D tensor:
$$
X = \begin{pmatrix}
0 &1 &2 \\
3 &4 &5
\end{pmatrix}$$
.. code-block:: text
the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
input = numpy.arange(6).reshape((2,3))
then the output $Y$ is:
the input is:
$$
Y = \begin{pmatrix}
0 &3 \\
1 &4 \\
2 &5
\end{pmatrix}$$
array([[0, 1, 2],
[3, 4, 5]])
given axis is:
[1, 0]
output = input.transpose(axis)
then the output is:
array([[0, 3],
[1, 4],
[2, 5]])
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
)DOC"
);
}
...
...
python/paddle/v2/dataset/wmt16.py
浏览文件 @
479c861b
...
...
@@ -171,8 +171,9 @@ def train(src_dict_size, trg_dict_size, src_lang="en"):
callable: The train reader.
"""
assert
(
src_lang
in
[
"en"
,
"de"
],
(
"An error language type. Only support: "
"en (for English); de(for Germany)"
))
if
src_lang
not
in
[
"en"
,
"de"
]:
raise
ValueError
(
"An error language type. Only support: "
"en (for English); de(for Germany)."
)
src_dict_size
,
trg_dict_size
=
__get_dict_size
(
src_dict_size
,
trg_dict_size
,
src_lang
)
...
...
@@ -218,9 +219,9 @@ def test(src_dict_size, trg_dict_size, src_lang="en"):
callable: The test reader.
"""
assert
(
src_lang
in
[
"en"
,
"de"
],
(
"An error language type.
"
"Only support: en (for English); de(for Germany)"
)
)
if
src_lang
not
in
[
"en"
,
"de"
]:
raise
ValueError
(
"An error language type.
"
"Only support: en (for English); de(for Germany)."
)
src_dict_size
,
trg_dict_size
=
__get_dict_size
(
src_dict_size
,
trg_dict_size
,
src_lang
)
...
...
@@ -266,9 +267,9 @@ def validation(src_dict_size, trg_dict_size, src_lang="en"):
Returns:
callable: The validation reader.
"""
assert
(
src_lang
in
[
"en"
,
"de"
],
(
"An error language type.
"
"Only support: en (for English); de(for Germany)"
)
)
if
src_lang
not
in
[
"en"
,
"de"
]:
raise
ValueError
(
"An error language type.
"
"Only support: en (for English); de(for Germany)."
)
src_dict_size
,
trg_dict_size
=
__get_dict_size
(
src_dict_size
,
trg_dict_size
,
src_lang
)
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
479c861b
...
...
@@ -22,14 +22,41 @@ from ..param_attr import ParamAttr
from
tensor
import
concat
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'warpctc'
,
'sequence_reshape'
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
]
...
...
@@ -44,14 +71,14 @@ def fc(input,
**Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It
creates a variable (one for each input tensor) called weights for each
input
tensor, which represents a fully connected weight matrix from each input
unit to each output unit. The fully connected layer multiplies each input
tensor with its coresponding weight to produce an output Tensor. If
multiple input tensors are given, the results of multiple multiplications
will be sumed up. If bias_attr is not None, a biases variable will be
created and added to the output. Finally, if activation is not None
,
it will be applied to the output as well.
creates a variable (one for each input tensor) called weights for each
input tensor, which represents a fully connected weight matrix from
each input unit to each output unit. The fully connected layer
multiplies each input tensor with its coresponding weight to produce
an output Tensor. If multiple input tensors are given, the results of
multiple multiplications will be sumed up. If bias_attr is not None,
a biases variable will be created and added to the output. Finally
,
i
f activation is not None, i
t will be applied to the output as well.
This process can be formulated as follows:
...
...
@@ -1814,11 +1841,11 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
- If both are 2-D, they are multiplied like conventional matrices.
- If either is n-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast
last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors.
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multiplication.
Args:
...
...
@@ -2112,3 +2139,41 @@ def sequence_reshape(input, new_dim):
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'new_dim'
:
new_dim
})
return
out
def
transpose
(
x
,
perm
,
name
=
None
):
"""
**transpose Layer**
Permute the dimensions of `input` according to `perm`.
The `i`-th dimension of the returned tensor will correspond to the
perm[i]-th dimension of `input`.
Args:
input (Variable): (Tensor), A Tensor.
perm (list): A permutation of the dimensions of `input`.
Returns:
Variable: A transposed Tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
x_transposed = layers.transpose(x, perm=[1, 0, 2])
"""
if
len
(
perm
)
!=
len
(
x
.
shape
):
raise
ValueError
(
"Input(perm) is the permutation of dimensions of Input(input). "
"It's length shoud be equal to Input(input)'s rank."
)
helper
=
LayerHelper
(
'transpose'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
helper
.
append_op
(
type
=
'transpose'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'axis'
:
perm
})
return
out
python/paddle/v2/fluid/layers/ops.py
浏览文件 @
479c861b
...
...
@@ -45,10 +45,20 @@ __activations__ = [
]
__all__
=
[
'mean'
,
'mul'
,
'reshape'
,
'scale'
,
'transpose'
,
'sigmoid_cross_entropy_with_logits'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'clip'
,
'clip_by_norm'
,
'sequence_softmax'
'mean'
,
'mul'
,
'reshape'
,
'scale'
,
'sigmoid_cross_entropy_with_logits'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'clip'
,
'clip_by_norm'
,
'sequence_softmax'
,
]
+
__activations__
for
_OP
in
set
(
__all__
):
...
...
python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py
浏览文件 @
479c861b
...
...
@@ -65,13 +65,13 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
emb
=
fluid
.
layers
.
reshape
(
x
=
emb
,
shape
=
[
batch_size
,
seq_len
,
emb_dim
])
emb
=
fluid
.
layers
.
transpose
(
x
=
emb
,
axis
=
[
1
,
0
,
2
])
emb
=
fluid
.
layers
.
transpose
(
x
=
emb
,
perm
=
[
1
,
0
,
2
])
c_pre_init
=
fluid
.
layers
.
fill_constant
(
dtype
=
emb
.
dtype
,
shape
=
[
batch_size
,
emb_dim
],
value
=
0.0
)
c_pre_init
.
stop_gradient
=
False
layer_1_out
=
lstm
(
emb
,
c_pre_init
=
c_pre_init
,
hidden_dim
=
emb_dim
)
layer_1_out
=
fluid
.
layers
.
transpose
(
x
=
layer_1_out
,
axis
=
[
1
,
0
,
2
])
layer_1_out
=
fluid
.
layers
.
transpose
(
x
=
layer_1_out
,
perm
=
[
1
,
0
,
2
])
prediction
=
fluid
.
layers
.
fc
(
input
=
layer_1_out
,
size
=
class_dim
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录