Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
46d2ca57
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
46d2ca57
编写于
2月 27, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Combine Reader=>Feeder together.
上级
c26431ba
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
52 addition
and
72 deletion
+52
-72
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+18
-20
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/reader/decorator.py
python/paddle/v2/reader/decorator.py
+23
-1
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+9
-50
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
46d2ca57
import
numpy
import
paddle.v2
as
paddle
import
mnist_util
def
train_reader
():
train_file
=
'./data/raw_data/train'
generator
=
mnist_util
.
read_from_mnist
(
train_file
)
for
item
in
generator
:
yield
item
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
...
...
@@ -45,17 +36,24 @@ def main():
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
adam_optimizer
)
trainer
.
train
(
train_data_reader
=
train_reader
,
topology
=
cost
,
parameters
=
parameters
,
event_handler
=
event_handler
,
batch_size
=
32
,
# batch size should be refactor in Data reader
data_types
=
[
# data_types will be removed, It should be in
# network topology
(
'pixel'
,
images
.
type
),
(
'label'
,
label
.
type
)],
reader_dict
=
{
'pixel'
:
0
,
'label'
:
1
}
)
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train_creator
(),
buf_size
=
8192
),
batch_size
=
32
)
trainer
.
train
(
train_reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train_creator
(),
buf_size
=
8192
),
batch_size
=
32
),
topology
=
cost
,
parameters
=
parameters
,
event_handler
=
event_handler
,
data_types
=
[
# data_types will be removed, It should be in
# network topology
(
'pixel'
,
images
.
type
),
(
'label'
,
label
.
type
)],
reader_dict
=
{
'pixel'
:
0
,
'label'
:
1
}
)
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/__init__.py
浏览文件 @
46d2ca57
...
...
@@ -20,12 +20,13 @@ import event
import
data_type
import
data_feeder
from
.
import
dataset
from
.
import
reader
import
attr
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
,
'data_feeder'
,
'dataset'
'event'
,
'data_type'
,
'attr'
,
'data_feeder'
,
'dataset'
,
'reader'
]
...
...
python/paddle/v2/reader/decorator.py
浏览文件 @
46d2ca57
...
...
@@ -14,7 +14,7 @@
__all__
=
[
'map_readers'
,
'buffered'
,
'compose'
,
'chain'
,
'shuffle'
,
'ComposeNotAligned'
'ComposeNotAligned'
,
'batched'
]
from
Queue
import
Queue
...
...
@@ -191,3 +191,25 @@ def buffered(reader, size):
e
=
q
.
get
()
return
data_reader
def
batched
(
reader
,
batch_size
):
"""
Create a batched reader.
:param reader: the data reader to read from.
:param batch_size: batch_size
:return: the batched reader.
"""
def
__impl__
():
r
=
reader
()
batch
=
[]
for
instance
in
r
:
batch
.
append
(
instance
)
if
len
(
batch
)
==
batch_size
:
yield
batch
batch
=
[]
if
batch
:
yield
batch
return
__impl__
python/paddle/v2/trainer.py
浏览文件 @
46d2ca57
...
...
@@ -29,7 +29,7 @@ class ITrainer(object):
"""
def
train
(
self
,
train_
data_reade
r
,
train_
reader_creato
r
,
topology
,
parameters
,
test_data_reader
=
None
,
...
...
@@ -37,7 +37,7 @@ class ITrainer(object):
"""
train method.
:param train_
data_reade
r:
:param train_
reader_creato
r:
:param topology:
:param parameters:
:param test_data_reader:
...
...
@@ -62,27 +62,23 @@ class SGD(ITrainer):
self
.
__optimizer__
=
update_equation
def
train
(
self
,
train_reader
_creator
,
train_reader
,
topology
,
parameters
,
num_passes
=
1
,
test_data_reader
=
None
,
event_handler
=
None
,
batch_size
=
32
,
data_types
=
None
,
reader_dict
=
None
):
"""
Training method. Will train num_passes of input data.
:param train_reader
_creator
:
:param train_reader:
:param topology: Network Topology, use one or more Layers to represent it.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param test_data_reader:
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param batch_size: Not important, will be removed after data refactor.
:param data_types: Not important, will be removed after data refactor.
:return:
"""
...
...
@@ -108,9 +104,7 @@ class SGD(ITrainer):
for
pass_id
in
xrange
(
num_passes
):
updater
.
startPass
()
for
batch_id
,
data_batch
in
enumerate
(
__data_reader_to_batch__
(
train_reader_creator
,
batch_size
,
topology
)):
for
batch_id
,
data_batch
in
enumerate
(
train_reader
()):
pass_type
=
updater
.
startBatch
(
len
(
data_batch
))
gm
.
forwardBackward
(
feeder
(
data_batch
),
out_args
,
pass_type
)
for
each_param
in
gm
.
getParameters
():
...
...
@@ -128,51 +122,16 @@ class SGD(ITrainer):
gm
.
finish
()
def
__data_reader_to_batch__
(
reader
,
batch_size
,
topology
):
"""
This function is not important, and will be removed when data refactored.
"""
def
input_reorder
(
func
):
for
item
in
func
():
retv
=
[]
for
__layer_name__
in
topology
.
input_layer_names
:
retv
.
append
(
item
[
__layer_name__
])
yield
retv
return
__generator_to_batch__
(
input_reorder
(
reader
),
batch_size
=
batch_size
)
def
__generator_to_batch__
(
generator
,
batch_size
):
"""
This function is not important, and will be removed when data refactored.
"""
ret_val
=
list
()
for
each_item
in
generator
:
ret_val
.
append
(
each_item
)
if
len
(
ret_val
)
==
batch_size
:
yield
ret_val
ret_val
=
list
()
if
len
(
ret_val
)
!=
0
:
yield
ret_val
def
__check_train_args__
(
train_data_reader
,
topology
,
parameters
,
test_data_reader
,
event_handler
,
**
kwargs
):
def
__check_train_args__
(
train_reader
,
topology
,
parameters
,
event_handler
,
**
kwargs
):
"""
Check train function's argument types
"""
if
not
callable
(
train_
data_reader
)
or
not
isinstance
(
train_data
_reader
(),
collections
.
Iterator
):
if
not
callable
(
train_
reader
)
or
not
isinstance
(
train
_reader
(),
collections
.
Iterator
):
raise
TypeError
(
'train_data_reader should be a function, '
'which can return a iterator'
)
if
test_data_reader
is
not
None
:
if
not
callable
(
test_data_reader
)
or
not
isinstance
(
test_data_reader
(),
collections
.
Iterator
):
raise
TypeError
(
'test_data_reader should be a function, which can '
'return a iterator'
)
if
not
isinstance
(
topology
,
ModelConfig
):
raise
TypeError
(
'topology should be a model config'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录