Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
452373de
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
452373de
编写于
2月 19, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
resize box in input image scale. test=develop
上级
3896d955
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
70 addition
and
29 deletion
+70
-29
paddle/fluid/operators/detection/yolo_box_op.cc
paddle/fluid/operators/detection/yolo_box_op.cc
+14
-0
paddle/fluid/operators/detection/yolo_box_op.h
paddle/fluid/operators/detection/yolo_box_op.h
+16
-7
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+19
-8
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+3
-1
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+18
-13
未找到文件。
paddle/fluid/operators/detection/yolo_box_op.cc
浏览文件 @
452373de
...
@@ -23,12 +23,15 @@ class YoloBoxOp : public framework::OperatorWithKernel {
...
@@ -23,12 +23,15 @@ class YoloBoxOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of YoloBoxOp should not be null."
);
"Input(X) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ImgSize"
),
"Input(ImgSize) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Boxes"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Boxes"
),
"Output(Boxes) of YoloBoxOp should not be null."
);
"Output(Boxes) of YoloBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Scores"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Scores"
),
"Output(Scores) of YoloBoxOp should not be null."
);
"Output(Scores) of YoloBoxOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_imgsize
=
ctx
->
GetInputDim
(
"ImgSize"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
...
@@ -39,6 +42,12 @@ class YoloBoxOp : public framework::OperatorWithKernel {
...
@@ -39,6 +42,12 @@ class YoloBoxOp : public framework::OperatorWithKernel {
dim_x
[
1
],
anchor_num
*
(
5
+
class_num
),
dim_x
[
1
],
anchor_num
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num))."
);
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
.
size
(),
2
,
"Input(ImgSize) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
[
0
],
dim_x
[
0
],
"Input(ImgSize) dim[0] and Input(X) dim[0] should be same."
);
PADDLE_ENFORCE_EQ
(
dim_imgsize
[
1
],
2
,
"Input(ImgSize) dim[1] should be 2."
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater then 0."
);
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
...
@@ -72,6 +81,11 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -72,6 +81,11 @@ class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"box locations, confidence score and classification one-hot"
"box locations, confidence score and classification one-hot"
"keys of each anchor box. Generally, X should be the output"
"keys of each anchor box. Generally, X should be the output"
"of YOLOv3 network."
);
"of YOLOv3 network."
);
AddInput
(
"ImgSize"
,
"The image size tensor of YoloBox operator, "
"This is a 2-D tensor with shape of [N, 2]. This tensor holds"
"height and width of each input image using for resize output"
"box in input image scale."
);
AddOutput
(
"Boxes"
,
AddOutput
(
"Boxes"
,
"The output tensor of detection boxes of YoloBox operator, "
"The output tensor of detection boxes of YoloBox operator, "
"This is a 3-D tensor with shape of [N, M, 4], N is the"
"This is a 3-D tensor with shape of [N, M, 4], N is the"
...
...
paddle/fluid/operators/detection/yolo_box_op.h
浏览文件 @
452373de
...
@@ -32,12 +32,15 @@ static inline T sigmoid(T x) {
...
@@ -32,12 +32,15 @@ static inline T sigmoid(T x) {
template
<
typename
T
>
template
<
typename
T
>
static
inline
Box
<
T
>
GetYoloBox
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
static
inline
Box
<
T
>
GetYoloBox
(
const
T
*
x
,
std
::
vector
<
int
>
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size
,
int
j
,
int
an_idx
,
int
grid_size
,
int
input_size
,
int
index
,
int
stride
)
{
int
input_size
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
)
{
Box
<
T
>
b
;
Box
<
T
>
b
;
b
.
x
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
*
input_size
/
grid_size
;
b
.
x
=
(
i
+
sigmoid
<
T
>
(
x
[
index
]))
*
img_width
/
grid_size
;
b
.
y
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
*
input_size
/
grid_size
;
b
.
y
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
]))
*
img_height
/
grid_size
;
b
.
w
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
];
b
.
w
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
b
.
h
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
];
input_size
;
b
.
h
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size
;
return
b
;
return
b
;
}
}
...
@@ -69,6 +72,7 @@ class YoloBoxKernel : public framework::OpKernel<T> {
...
@@ -69,6 +72,7 @@ class YoloBoxKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
imgsize
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
...
@@ -87,6 +91,7 @@ class YoloBoxKernel : public framework::OpKernel<T> {
...
@@ -87,6 +91,7 @@ class YoloBoxKernel : public framework::OpKernel<T> {
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
T
*
scores_data
=
T
*
scores_data
=
...
@@ -94,6 +99,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
...
@@ -94,6 +99,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
...
@@ -106,8 +114,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
...
@@ -106,8 +114,9 @@ class YoloBoxKernel : public framework::OpKernel<T> {
int
box_idx
=
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
);
Box
<
T
>
pred
=
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
j
,
h
,
Box
<
T
>
pred
=
input_size
,
box_idx
,
stride
);
GetYoloBox
(
input_data
,
anchors
,
l
,
k
,
j
,
h
,
input_size
,
box_idx
,
stride
,
img_height
,
img_width
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes_data
,
pred
,
box_idx
);
CalcDetectionBox
<
T
>
(
boxes_data
,
pred
,
box_idx
);
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
452373de
...
@@ -611,12 +611,19 @@ def yolov3_loss(x,
...
@@ -611,12 +611,19 @@ def yolov3_loss(x,
@
templatedoc
(
op_type
=
"yolo_box"
)
@
templatedoc
(
op_type
=
"yolo_box"
)
def
yolo_box
(
x
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
name
=
None
):
def
yolo_box
(
x
,
img_size
,
anchors
,
class_num
,
conf_thresh
,
downsample_ratio
,
name
=
None
):
"""
"""
${comment}
${comment}
Args:
Args:
x (Variable): ${x_comment}
x (Variable): ${x_comment}
img_size (Variable): ${img_size_comment}
anchors (list|tuple): ${anchors_comment}
anchors (list|tuple): ${anchors_comment}
class_num (int): ${class_num_comment}
class_num (int): ${class_num_comment}
conf_thresh (float): ${conf_thresh_comment}
conf_thresh (float): ${conf_thresh_comment}
...
@@ -643,16 +650,17 @@ def yolo_box(x, anchors, class_num, conf_thresh, downsample_ratio, name=None):
...
@@ -643,16 +650,17 @@ def yolo_box(x, anchors, class_num, conf_thresh, downsample_ratio, name=None):
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
if
not
isinstance
(
x
,
Variable
):
if
not
isinstance
(
x
,
Variable
):
raise
TypeError
(
"Input x of yolov3_loss must be Variable"
)
raise
TypeError
(
"Input x of yolo_box must be Variable"
)
if
not
isinstance
(
img_size
,
Variable
):
raise
TypeError
(
"Input img_size of yolo_box must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolo
v3_loss
must be list or tuple"
)
raise
TypeError
(
"Attr anchors of yolo
_box
must be list or tuple"
)
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
raise
TypeError
(
"Attr anchor_mask of yolo
v3_loss
must be list or tuple"
)
raise
TypeError
(
"Attr anchor_mask of yolo
_box
must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolo
v3_loss
must be an integer"
)
raise
TypeError
(
"Attr class_num of yolo
_box
must be an integer"
)
if
not
isinstance
(
conf_thresh
,
float
):
if
not
isinstance
(
conf_thresh
,
float
):
raise
TypeError
(
raise
TypeError
(
"Attr ignore_thresh of yolo_box must be a float number"
)
"Attr ignore_thresh of yolov3_loss must be a float number"
)
boxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
boxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
scores
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
scores
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
@@ -666,7 +674,10 @@ def yolo_box(x, anchors, class_num, conf_thresh, downsample_ratio, name=None):
...
@@ -666,7 +674,10 @@ def yolo_box(x, anchors, class_num, conf_thresh, downsample_ratio, name=None):
helper
.
append_op
(
helper
.
append_op
(
type
=
'yolo_box'
,
type
=
'yolo_box'
,
inputs
=
{
"X"
:
x
,
},
inputs
=
{
"X"
:
x
,
"ImgSize"
:
img_size
,
},
outputs
=
{
outputs
=
{
'Boxes'
:
boxes
,
'Boxes'
:
boxes
,
'Scores'
:
scores
,
'Scores'
:
scores
,
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
452373de
...
@@ -484,7 +484,9 @@ class TestYoloDetection(unittest.TestCase):
...
@@ -484,7 +484,9 @@ class TestYoloDetection(unittest.TestCase):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
boxes
,
scores
=
layers
.
yolo_box
(
x
,
[
10
,
13
,
30
,
13
],
10
,
0.01
,
32
)
img_size
=
layers
.
data
(
name
=
'x'
,
shape
=
[
2
],
dtype
=
'int32'
)
boxes
,
scores
=
layers
.
yolo_box
(
x
,
img_size
,
[
10
,
13
,
30
,
13
],
10
,
0.01
,
32
)
self
.
assertIsNotNone
(
boxes
)
self
.
assertIsNotNone
(
boxes
)
self
.
assertIsNotNone
(
scores
)
self
.
assertIsNotNone
(
scores
)
...
...
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
浏览文件 @
452373de
...
@@ -25,7 +25,7 @@ def sigmoid(x):
...
@@ -25,7 +25,7 @@ def sigmoid(x):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
YoloBox
(
x
,
attrs
):
def
YoloBox
(
x
,
img_size
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
n
,
c
,
h
,
w
=
x
.
shape
anchors
=
attrs
[
'anchors'
]
anchors
=
attrs
[
'anchors'
]
an_num
=
int
(
len
(
anchors
)
//
2
)
an_num
=
int
(
len
(
anchors
)
//
2
)
...
@@ -56,15 +56,14 @@ def YoloBox(x, attrs):
...
@@ -56,15 +56,14 @@ def YoloBox(x, attrs):
pred_box
=
pred_box
*
(
pred_conf
>
0.
).
astype
(
'float32'
)
pred_box
=
pred_box
*
(
pred_conf
>
0.
).
astype
(
'float32'
)
pred_box
=
pred_box
.
reshape
((
n
,
-
1
,
4
))
pred_box
=
pred_box
.
reshape
((
n
,
-
1
,
4
))
pred_box
[:,
:,
:
pred_box
[:,
:,
:
2
],
pred_box
[:,
:,
2
:
4
]
=
\
2
],
pred_box
[:,
:,
2
:
pred_box
[:,
:,
:
2
]
-
pred_box
[:,
:,
2
:
4
]
/
2.
,
\
4
]
=
pred_box
[:,
:,
:
pred_box
[:,
:,
:
2
]
+
pred_box
[:,
:,
2
:
4
]
/
2.0
2
]
-
pred_box
[:,
:,
2
:
# pred_box = pred_box * input_size
4
]
/
2.
,
pred_box
[:,
:,
:
pred_box
[:,
:,
0
]
=
pred_box
[:,
:,
0
]
*
img_size
[:,
1
][:,
np
.
newaxis
]
2
]
+
pred_box
[:,
:,
pred_box
[:,
:,
1
]
=
pred_box
[:,
:,
1
]
*
img_size
[:,
0
][:,
np
.
newaxis
]
2
:
pred_box
[:,
:,
2
]
=
pred_box
[:,
:,
2
]
*
img_size
[:,
1
][:,
np
.
newaxis
]
4
]
/
2.0
pred_box
[:,
:,
3
]
=
pred_box
[:,
:,
3
]
*
img_size
[:,
0
][:,
np
.
newaxis
]
pred_box
=
pred_box
*
input_size
return
pred_box
,
pred_score
.
reshape
((
n
,
-
1
,
class_num
))
return
pred_box
,
pred_score
.
reshape
((
n
,
-
1
,
class_num
))
...
@@ -74,6 +73,7 @@ class TestYoloBoxOp(OpTest):
...
@@ -74,6 +73,7 @@ class TestYoloBoxOp(OpTest):
self
.
initTestCase
()
self
.
initTestCase
()
self
.
op_type
=
'yolo_box'
self
.
op_type
=
'yolo_box'
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
'float32'
)
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
'float32'
)
img_size
=
np
.
random
.
randint
(
10
,
20
,
self
.
imgsize_shape
).
astype
(
'int32'
)
self
.
attrs
=
{
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
"anchors"
:
self
.
anchors
,
...
@@ -82,8 +82,11 @@ class TestYoloBoxOp(OpTest):
...
@@ -82,8 +82,11 @@ class TestYoloBoxOp(OpTest):
"downsample"
:
self
.
downsample
,
"downsample"
:
self
.
downsample
,
}
}
self
.
inputs
=
{
'X'
:
x
,
}
self
.
inputs
=
{
boxes
,
scores
=
YoloBox
(
x
,
self
.
attrs
)
'X'
:
x
,
'ImgSize'
:
img_size
,
}
boxes
,
scores
=
YoloBox
(
x
,
img_size
,
self
.
attrs
)
self
.
outputs
=
{
self
.
outputs
=
{
"Boxes"
:
boxes
,
"Boxes"
:
boxes
,
"Scores"
:
scores
,
"Scores"
:
scores
,
...
@@ -95,10 +98,12 @@ class TestYoloBoxOp(OpTest):
...
@@ -95,10 +98,12 @@ class TestYoloBoxOp(OpTest):
def
initTestCase
(
self
):
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
self
.
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
]
an_num
=
int
(
len
(
self
.
anchors
)
//
2
)
an_num
=
int
(
len
(
self
.
anchors
)
//
2
)
self
.
batch_size
=
3
self
.
class_num
=
2
self
.
class_num
=
2
self
.
conf_thresh
=
0.5
self
.
conf_thresh
=
0.5
self
.
downsample
=
32
self
.
downsample
=
32
self
.
x_shape
=
(
3
,
an_num
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
x_shape
=
(
self
.
batch_size
,
an_num
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
imgsize_shape
=
(
self
.
batch_size
,
2
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录