Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4450a312
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4450a312
编写于
12月 26, 2017
作者:
Y
Yang Yu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish Unittest
上级
01d20c44
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
67 addition
and
40 deletion
+67
-40
python/paddle/v2/fluid/tests/decorators.py
python/paddle/v2/fluid/tests/decorators.py
+27
-0
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
+40
-40
未找到文件。
python/paddle/v2/fluid/tests/decorators.py
0 → 100644
浏览文件 @
4450a312
import
paddle.v2.fluid
as
fluid
__all__
=
[
'many_times'
,
'prog_scope'
]
def
many_times
(
times
):
def
__impl__
(
fn
):
def
__fn__
(
*
args
,
**
kwargs
):
for
_
in
range
(
times
):
fn
(
*
args
,
**
kwargs
)
return
__fn__
return
__impl__
def
prog_scope
():
def
__impl__
(
fn
):
def
__fn__
(
*
args
,
**
kwargs
):
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
fn
(
*
args
,
**
kwargs
)
return
__fn__
return
__impl__
python/paddle/v2/fluid/tests/test_dynrnn_gradient_check.py
浏览文件 @
4450a312
...
...
@@ -3,7 +3,7 @@ import random
import
collections
import
paddle.v2.fluid
as
fluid
import
unittest
import
copy
from
decorators
import
*
class
Memory
(
object
):
...
...
@@ -78,7 +78,7 @@ class BaseRNN(object):
self
.
outputs
[
oname
]
=
Output
()
def
step
(
self
,
**
kwargs
):
pass
raise
NotImplementedError
()
def
exe
(
self
):
retv
=
dict
()
...
...
@@ -141,18 +141,22 @@ class BaseRNN(object):
feed_dict
[
pname
]
=
self
.
params
[
pname
]
return
feed_dict
def
get_numeric_gradient_of_param
(
self
,
param_name
,
delta
=
0.01
):
def
get_numeric_gradient_of_param
(
self
,
param_name
,
delta
=
0.001
):
if
len
(
p
.
shape
)
!=
2
:
raise
ValueError
(
"Not support get numeric gradient of an parameter,"
" which is not matrix"
)
p
=
self
.
params
[
param_name
]
g
=
numpy
.
zeros
(
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p_it
,
g_it
in
numpy
.
nditer
([
p
,
g
],
op_flags
=
[
'readwrite'
]):
o
=
float
(
p_it
)
p_it
[...]
=
o
+
delta
pos
=
self
.
_exe_mean_out_
()
p_it
[...]
=
o
-
delta
neg
=
self
.
_exe_mean_out_
()
p_it
[...]
=
o
g
[:]
=
(
pos
-
neg
)
/
(
delta
*
2
)
for
i
in
xrange
(
p
.
shape
[
0
]):
for
j
in
xrange
(
p
.
shape
[
1
]):
o
=
p
[
i
][
j
]
p
[
i
][
j
]
+=
delta
pos
=
self
.
_exe_mean_out_
()
p
[
i
][
j
]
-=
2
*
delta
neg
=
self
.
_exe_mean_out_
()
p
[
i
][
j
]
=
o
g
[
i
][
j
]
=
(
pos
-
neg
)
/
(
delta
*
2
)
return
g
def
_exe_mean_out_
(
self
):
...
...
@@ -175,40 +179,36 @@ class SimpleMul(BaseRNN):
class
TestSimpleMul
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
python_impl
=
SimpleMul
()
def
test_forward
(
self
):
program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
,
startup_program
):
dat
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
[
32
],
lod_level
=
1
)
rnn
=
fluid
.
layers
.
DynamicRNN
()
with
rnn
.
block
():
d
=
rnn
.
step_input
(
dat
)
o
=
fluid
.
layers
.
fc
(
input
=
d
,
param_attr
=
'W'
,
bias_attr
=
False
,
size
=
10
,
act
=
None
)
rnn
.
output
(
o
)
out
=
rnn
()
out
=
fluid
.
layers
.
sequence_pool
(
out
,
pool_type
=
'last'
)
loss
=
fluid
.
layers
.
mean
(
x
=
out
)
fluid
.
backward
.
append_backward_ops
(
loss
)
# Test many times in local to ensure the random seed cannot breaks CI
# @many_times(10)
@
prog_scope
()
def
test_forward_backward
(
self
):
python_impl
=
SimpleMul
()
dat
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
[
32
],
lod_level
=
1
)
rnn
=
fluid
.
layers
.
DynamicRNN
()
with
rnn
.
block
():
d
=
rnn
.
step_input
(
dat
)
o
=
fluid
.
layers
.
fc
(
input
=
d
,
param_attr
=
'W'
,
bias_attr
=
False
,
size
=
10
,
act
=
None
)
rnn
.
output
(
o
)
out
=
rnn
()
out
=
fluid
.
layers
.
sequence_pool
(
out
,
pool_type
=
'last'
)
loss
=
fluid
.
layers
.
mean
(
x
=
out
)
fluid
.
backward
.
append_backward_ops
(
loss
)
cpu
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
cpu
)
out
,
w_g
=
exe
.
run
(
program
,
feed
=
self
.
python_impl
.
to_feed
(
cpu
),
out
,
w_g
=
exe
.
run
(
feed
=
python_impl
.
to_feed
(
cpu
),
fetch_list
=
[
out
,
"W@GRAD"
])
out_by_python
=
self
.
python_impl
.
exe
()[
'Out'
]
out_by_python
=
python_impl
.
exe
()[
'Out'
]
self
.
assertTrue
(
numpy
.
allclose
(
out
,
out_by_python
))
w_g_num
=
self
.
python_impl
.
get_numeric_gradient_of_param
(
"W"
)
print
w_g_num
[
0
][
0
]
print
w_g_num
-
w_g
w_g_num
=
python_impl
.
get_numeric_gradient_of_param
(
"W"
)
self
.
assertTrue
(
numpy
.
allclose
(
w_g_num
,
w_g
,
rtol
=
0.05
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录