提交 430b4219 编写于 作者: L liaogang

Fix conflicts

...@@ -36,8 +36,8 @@ include(simd) ...@@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND})
option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF) option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
......
...@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and ...@@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
- [Deep Learning 101](http://book.paddlepaddle.org/index.html) - [Deep Learning 101](http://book.paddlepaddle.org/index.html)
You might want to start from the this online interactive book that can run in Jupyter Notebook. You might want to start from this online interactive book that can run in Jupyter Notebook.
- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) - [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)
......
...@@ -20,34 +20,30 @@ INCLUDE(ExternalProject) ...@@ -20,34 +20,30 @@ INCLUDE(ExternalProject)
SET(MKLDNN_PROJECT "extern_mkldnn") SET(MKLDNN_PROJECT "extern_mkldnn")
SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn) SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_ROOT ${CMAKE_INSTALL_PREFIX}) SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
IF(NOT "$ENV{HOME}" STREQUAL "/root") SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
SET(MKLDNN_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLDNN_INSTALL_DIR "${MKLDNN_INSTALL_ROOT}/opt/paddle/third_party/mkldnn")
SET(MKLDNN_INCLUDE_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32) IF(WIN32 OR APPLE)
MESSAGE(WARNING "It is not supported compiling with mkldnn in windows Paddle yet." MESSAGE(WARNING
"Force WITH_MKLDNN=OFF") "Windows or Mac is not supported with MKLDNN in Paddle yet."
SET(WITH_MKLDNN OFF) "Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE)
return() return()
ELSE(WIN32) ENDIF()
SET(MKLDNN_LIBRARY "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
#SET(CMAKE_MACOSX_RPATH 1) # hold for MacOS SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${MKLDNN_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR})
IF(${CBLAS_PROVIDER} STREQUAL "MKLML") IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
SET(MKLDNN_MKLROOT ${MKLML_ROOT}) SET(MKLDNN_MKLROOT ${MKLML_ROOT})
SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB}) SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB})
SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR}) SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR})
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF() ENDIF()
ExternalProject_Add( ExternalProject_Add(
...@@ -57,16 +53,15 @@ ExternalProject_Add( ...@@ -57,16 +53,15 @@ ExternalProject_Add(
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.9" GIT_TAG "v0.9"
PREFIX ${MKLDNN_SOURCES_DIR} PREFIX ${MKLDNN_SOURCES_DIR}
CONFIGURE_COMMAND mkdir -p <SOURCE_DIR>/build
BUILD_COMMAND cd <SOURCE_DIR>/build
&& cmake .. -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} -DMKLROOT=${MKLDNN_MKLROOT}
&& $(MAKE)
INSTALL_COMMAND cd <SOURCE_DIR>/build && $(MAKE) install
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
) )
ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIBRARY}) SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIBRARY}") MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIB}")
LIST(APPEND external_project_dependencies mkldnn) LIST(APPEND external_project_dependencies mkldnn)
...@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML}) ...@@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML})
return() return()
ENDIF(NOT ${WITH_MKLML}) ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml") SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170425") SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz") SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "opt/paddle/third_party/mklml") SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${CMAKE_INSTALL_PREFIX}") SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
IF(NOT "$ENV{HOME}" STREQUAL "/root")
SET(MKLML_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR}) SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER}) SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include) SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
......
...@@ -15,7 +15,6 @@ if(Boost_FOUND) ...@@ -15,7 +15,6 @@ if(Boost_FOUND)
add_subdirectory(platform) add_subdirectory(platform)
add_subdirectory(framework) add_subdirectory(framework)
add_subdirectory(operators) add_subdirectory(operators)
add_subdirectory(pybind)
endif() endif()
if(WITH_C_API) if(WITH_C_API)
......
...@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. ...@@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
cc_library(net SRCS net.cc DEPS op_registry) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op)
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <list> #include <list>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names, ...@@ -32,7 +32,7 @@ static bool AllInSet(const std::vector<std::string>& names,
} }
static std::shared_ptr<OperatorBase> NOP() { static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<NetOp>(); auto net_op = std::make_shared<operators::NetOp>();
net_op->type_ = "@NOP@"; net_op->type_ = "@NOP@";
net_op->CompleteAddOp(); net_op->CompleteAddOp();
return net_op; return net_op;
...@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() { ...@@ -42,9 +42,9 @@ static std::shared_ptr<OperatorBase> NOP() {
// //
// no_grad_names the gradient variable names without gradient calculating. // no_grad_names the gradient variable names without gradient calculating.
// //
// uniq_id is a unique index used inside recursively calling BackwardRecursive. // uniq_id is a unique index used inside recursively calling
// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through // BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
// recursive calling. // pass `uniq_id` through recursive calling.
// //
// returns The backward operator. For simple situation, it is a simple // returns The backward operator. For simple situation, it is a simple
// operator. For complex situation, it is a NetOp. // operator. For complex situation, it is a NetOp.
...@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -64,8 +64,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
return NOP(); return NOP();
} }
// All output gradients of forwarding operator do not need to calculate. Then // All output gradients of forwarding operator do not need to calculate.
// all input gradients cannot be computed at all, and we put them into // Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP. // `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(), if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) { no_grad_names)) {
...@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -77,14 +77,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
} }
// Returned gradient network // Returned gradient network
auto net = std::make_shared<NetOp>(); auto net = std::make_shared<operators::NetOp>();
if (forwardOp.IsNetOp()) { if (forwardOp.IsNetOp()) {
// Because forwardOp is a net op, it can static_cast. // Because forwardOp is a net op, it can static_cast.
auto& forwardNet = static_cast<const NetOp&>(forwardOp); auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
// Map from output gradient variable name to operator's indices in backward // Map from output gradient variable name to operator's indices in
// net. That operator generates that variable. // backward net. That operator generates that variable.
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops; std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
size_t local_op_id = 0; size_t local_op_id = 0;
...@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward( ...@@ -168,6 +168,9 @@ std::shared_ptr<OperatorBase> Backward(
std::unordered_set<std::string> no_grad_names; std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size()); no_grad_names.reserve(no_grad_vars.size());
no_grad_names.insert(OperatorBase::EMPTY_VAR_NAME() +
OperatorBase::GRAD_VAR_SUFFIX());
for (auto& name : no_grad_vars) { for (auto& name : no_grad_vars) {
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX()); no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
} }
......
...@@ -15,8 +15,9 @@ ...@@ -15,8 +15,9 @@
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { ...@@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
} }
}; };
class FcOp : public NetOp { class FcOp : public ops::NetOp {
public: public:
void Init() override { void Init() override {
AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")},
...@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) { ...@@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd); auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(1UL, gop->inputs_.size()); ASSERT_EQ(4UL, gop->inputs_.size());
ASSERT_EQ("Out" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->inputs_[0]); ASSERT_EQ(f::OperatorBase::EMPTY_VAR_NAME(), gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]); ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]);
ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]); ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]);
...@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) { ...@@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) {
auto no_input_gop = f::Backward(*fwd, {"X", "b"}); auto no_input_gop = f::Backward(*fwd, {"X", "b"});
ASSERT_NE(no_input_gop, nullptr); ASSERT_NE(no_input_gop, nullptr);
ASSERT_TRUE(no_input_gop->IsNetOp()); ASSERT_TRUE(no_input_gop->IsNetOp());
ASSERT_EQ(0UL, std::static_pointer_cast<f::NetOp>(no_input_gop)->ops_.size()); ASSERT_EQ(0UL,
std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
} }
TEST(Backward, net_fc_backward_normal) { TEST(Backward, net_fc_backward_normal) {
...@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) { ...@@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get()); auto net = static_cast<ops::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString()); ASSERT_NO_THROW(net->DebugString());
...@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
auto net = static_cast<f::NetOp *>(gop.get()); auto net = static_cast<ops::NetOp *>(gop.get());
ASSERT_NO_THROW(net->DebugString()); ASSERT_NO_THROW(net->DebugString());
...@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) {
} }
TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_input_of_network_not_need_grad) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
{"mul_tmp_0", "add_tmp_0", "hidden0"}, {})); {"mul_tmp_0", "add_tmp_0", "hidden0"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
...@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = Backward(net, {"X"}); // X@GRAD is not need. auto bwd = Backward(net, {"X"}); // X@GRAD is not need.
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
std::unordered_set<std::string> all_output = std::unordered_set<std::string>( std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
bwd_net->outputs_.begin(), bwd_net->outputs_.end()); bwd_net->outputs_.begin(), bwd_net->outputs_.end());
...@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) {
ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<f::NetOp *>(bwd_net->ops_[1].get()); auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ( ASSERT_EQ(
f::OperatorBase::EMPTY_VAR_NAME(), f::OperatorBase::EMPTY_VAR_NAME(),
...@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) { ...@@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) {
} }
TEST(Backward, net_shared_weight) { TEST(Backward, net_shared_weight) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = f::Backward(net, {}); auto bwd = f::Backward(net, {});
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
ASSERT_EQ(3UL, bwd_net->ops_.size()); ASSERT_EQ(3UL, bwd_net->ops_.size());
ASSERT_EQ("add", bwd_net->ops_[2]->type_); ASSERT_EQ("add", bwd_net->ops_[2]->type_);
} }
...@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) { ...@@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"X", "b"}); auto backward = f::Backward(*fwd, {"X", "b"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
...@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) { ...@@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
auto backward = f::Backward(*fwd, {"Out"}); auto backward = f::Backward(*fwd, {"Out"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
...@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {}); auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
auto backward = f::Backward(*fwd, {"Z"}); auto backward = f::Backward(*fwd, {"Z"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<f::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(net->ops_.size(), 2UL); ASSERT_EQ(net->ops_.size(), 2UL);
auto &fill_zero = *net->ops_[0]; auto &fill_zero = *net->ops_[0];
...@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) { ...@@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) {
} }
TEST(Backward, linear_net_intermediate_variable_has_no_grad) { TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
f::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
{"mul_out1", "add_out1", "out1"}, {})); {"mul_out1", "add_out1", "out1"}, {}));
net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"}, net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
...@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { ...@@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
net.CompleteAddOp(); net.CompleteAddOp();
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto bwd_net = static_cast<f::NetOp *>(backward.get()); auto bwd_net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(bwd_net->ops_.size(), 3UL); ASSERT_EQ(bwd_net->ops_.size(), 3UL);
auto &grad_fc = *bwd_net->ops_[0]; auto &grad_fc = *bwd_net->ops_[0];
EXPECT_EQ(grad_fc.inputs_.size(), EXPECT_EQ(grad_fc.inputs_.size(),
3UL /* external input number */ 3UL /* external input number */
+ 1UL /* external output number*/ + 1UL /* external output number*/
+ 1UL /* number of gradient of external output*/ + 1UL /* number of gradient of external output*/
- 1UL /*ignoreGradient varable number*/
+ 2U /* internal variable number*/); + 2U /* internal variable number*/);
EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/ EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/
+ 2UL /* input number of rowwise_add */ + 2UL /* input number of rowwise_add */
......
...@@ -8,107 +8,97 @@ You may obtain a copy of the License at ...@@ -8,107 +8,97 @@ You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOpArgType::OUT WARRANTIES OR CONDITIONS OF ANY KOpArgType::IND, either
See the License for the specific language governing permissions and express or implied. See the License for the specific language governing
limitations under the License. */ permissions and limitations under the License. */
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
OperatorBase* GradOpBuilder::Build() { class OpRegistry;
BuildOpInOutArgList();
std::string grad_op_type = OpRegistry::grad_ops().at(op_.type_); using VarIndexMap = std::unordered_map<std::string, int>;
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
CompleteGradOp(grad_op);
return grad_op;
}
OpInOutArg* GradOpBuilder::BuildArg(const VarProto& var, enum class OpArgType { IN, OUT };
const VarIndexMap& var_map,
const std::vector<int>& format, static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) {
InOutType type) { std::string key = type == OpArgType::IN ? "input_format" : "output_format";
int idx = var_map.at(var.name()); return op->attrs_.count(key)
int begin_idx = format.empty() ? idx : format.at(idx); ? &boost::get<std::vector<int>>(op->attrs_.at(key))
int end_idx = format.empty() ? idx + 1 : format.at(idx + 1); : nullptr;
return new OpInOutArg(var.name(), type, !var.ignore_gradient(), begin_idx,
end_idx);
} }
void GradOpBuilder::BuildOpInOutArgList() { static const std::vector<int>* GetOpFormat(const OperatorBase* op,
const OpProto& op_proto = OpRegistry::protos().at(op_.type_); const OpArgType& type) {
const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_.type_)); std::string key = type == OpArgType::IN ? "input_format" : "output_format";
const std::vector<int>& in_format = return op->attrs_.count(key)
op_.attrs_.count("input_format") ? &boost::get<std::vector<int>>(op->attrs_.at(key))
? op_.GetAttr<std::vector<int>>("input_format") : nullptr;
: std::vector<int>();
const std::vector<int>& out_format =
op_.attrs_.count("output_format")
? op_.GetAttr<std::vector<int>>("output_format")
: std::vector<int>();
for (const auto& var : op_proto.inputs()) {
arg_list_.emplace_back(
std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, in_format, IN)));
}
for (const auto& var : op_proto.outputs()) {
arg_list_.emplace_back(
std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, out_format, OUT)));
}
} }
void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg, static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
std::vector<std::string>& in_out, const OpArgType& src_type, const OpArgType& dst_type,
std::vector<int>& format, int& idx, bool is_grad) {
VarIndexMap* varmap, int& idx, const std::vector<std::string>& src_inout =
bool is_grad) const { src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_;
std::string var_name = arg->proto_name_; const std::vector<int>* src_format = GetOpFormat(src_op, src_type);
if (is_grad) {
var_name += OperatorBase::GRAD_VAR_SUFFIX(); std::vector<std::string>& dst_inout =
} dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_;
(*varmap)[var_name] = idx++; std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
size_t pre_sz = in_out.size(); const OpProto& proto = OpRegistry::protos().at(src_op->type_);
auto base_it = arg->type_ == IN ? op_.inputs_.begin() : op_.outputs_.begin(); const auto& src_arg_list =
std::copy(base_it + arg->begin_idx_, base_it + arg->end_idx_, src_type == OpArgType::IN ? proto.inputs() : proto.outputs();
std::back_inserter(in_out));
if (is_grad) { for (const auto& arg : src_arg_list) {
for (size_t i = pre_sz; i < in_out.size(); ++i) { std::string src_name = arg.name();
in_out[i] += OperatorBase::GRAD_VAR_SUFFIX(); std::string dst_name =
is_grad ? src_name + OperatorBase::GRAD_VAR_SUFFIX() : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin =
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx);
int src_end = src_format == nullptr ? src_arg_idx + 1
: src_format->at(src_arg_idx + 1);
for (int i = src_begin; i < src_end; ++i) {
std::string s = is_grad ? src_inout[i] + OperatorBase::GRAD_VAR_SUFFIX()
: arg.ignore_gradient()
? OperatorBase::EMPTY_VAR_NAME()
: src_inout[i];
dst_inout.emplace_back(s);
}
if (dst_format != nullptr) {
dst_format->push_back(dst_inout.size());
} }
} }
format.push_back(in_out.size());
} }
void GradOpBuilder::CompleteGradOp(OperatorBase* grad_op) const { OperatorBase* BuildGradOp(const OperatorBase* op) {
grad_op->attrs_ = op_.attrs_; std::string grad_op_type = OpRegistry::grad_ops().at(op->type_);
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
grad_op->type_ = grad_op_type;
grad_op->attrs_ = op->attrs_;
grad_op->attrs_.erase("input_format"); grad_op->attrs_.erase("input_format");
grad_op->attrs_.erase("output_format"); grad_op->attrs_.erase("output_format");
VarIndexMap* grad_varmap = new VarIndexMap(); if (GetOpFormat(op, OpArgType::IN) != nullptr) {
grad_op->attrs_["output_format"] = std::vector<int>({0});
}
if (GetOpFormat(op, OpArgType::IN) != nullptr ||
GetOpFormat(op, OpArgType::OUT) != nullptr) {
grad_op->attrs_["input_format"] = std::vector<int>({0});
}
grad_op->in_out_idxs_.reset(new VarIndexMap());
int in_idx = 0; int in_idx = 0;
int out_idx = 0; int out_idx = 0;
std::vector<int> in_format({0}); TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I
std::vector<int> out_format({0}); TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G
for (const auto& arg : arg_list_) { TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG
// op_'s inputs_ and outputs_ TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG
if (arg->needed_in_grad_) { return grad_op;
AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
in_idx, false);
}
if (arg->type_ == IN) {
// gradients of op_'s inputs_
AddArgIntoGradOp(arg.get(), grad_op->outputs_, out_format, grad_varmap,
out_idx, true);
} else {
// gradients of op_'s outputs_
AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
in_idx, true);
}
}
grad_op->attrs_["input_format"] = in_format;
grad_op->attrs_["output_format"] = out_format;
grad_op->in_out_idxs_.reset(grad_varmap);
} }
} // namespace framework } // namespace framework
......
...@@ -14,49 +14,12 @@ limitations under the License. */ ...@@ -14,49 +14,12 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OpRegistry;
OperatorBase* BuildGradOp(const OperatorBase* op);
enum InOutType { IN, OUT };
struct OpInOutArg {
explicit OpInOutArg(const std::string& proto_name, const InOutType& type,
bool needed_in_grad, size_t begin_idx, size_t end_idx)
: proto_name_(proto_name),
type_(type),
needed_in_grad_(needed_in_grad),
begin_idx_(begin_idx),
end_idx_(end_idx) {}
std::string proto_name_;
InOutType type_;
bool needed_in_grad_;
size_t begin_idx_;
size_t end_idx_;
};
class GradOpBuilder {
using VarIndexMap = std::unordered_map<std::string, int>;
public:
explicit GradOpBuilder(const OperatorBase& op) : op_(op) {}
OperatorBase* Build();
private:
OpInOutArg* BuildArg(const VarProto& var, const VarIndexMap& var_map,
const std::vector<int>& format, InOutType type);
void BuildOpInOutArgList();
void AddArgIntoGradOp(const OpInOutArg* arg, std::vector<std::string>& in_out,
std::vector<int>& format, VarIndexMap* varmap, int& idx,
bool is_grad) const;
void CompleteGradOp(OperatorBase* grad_op) const;
const OperatorBase& op_;
std::vector<std::shared_ptr<OpInOutArg>> arg_list_;
};
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -8,10 +8,49 @@ USE_OP(add_two); ...@@ -8,10 +8,49 @@ USE_OP(add_two);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class NOP : public OperatorBase {
public:
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
};
class MutiInOutOpMaker : public OpProtoAndCheckerMaker {
public:
MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple();
AddInput("In3", "another single input");
AddOutput("Out1", "a single output");
AddOutput("Out2_mult", "a multiple output").SetMultiple();
AddComment("test op with multiple inputs and outputs");
}
};
class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
public:
IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple().IgnoreGradient();
AddInput("In3_mult", "another multiple input").SetMultiple();
AddOutput("Out1_mult", "a multiple output").SetMultiple();
AddOutput("Out2", "a single output").IgnoreGradient();
AddComment("op with inputs and outputs ignored in gradient calculating");
}
};
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
TEST(GradOpBuilder, AddTwo) { TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<OperatorBase> add_op( std::shared_ptr<f::OperatorBase> add_op(
OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); f::OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {}));
std::shared_ptr<OperatorBase> grad_add_op = OpRegistry::CreateGradOp(*add_op); std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4); EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4);
EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2); EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2);
EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("X"), "x");
...@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) { ...@@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD");
} }
} // namespace framework REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker);
} // namespace paddle REGISTER_GRADIENT_OP(mult_io, mult_io_grad, f::NOP);
\ No newline at end of file REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP);
TEST(GradOpBuilder, MutiInOut) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 4, 5}},
{"output_format", std::vector<int>{0, 1, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"mult_io", {"in1", "in2_1", "in2_2", "in2_3", "in3"},
{"out1", "out2_1", "out2_2"}, attrs));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({"in2_1", "in2_2", "in2_3"}));
EXPECT_EQ(grad_test_op->Input("In3"), "in3");
EXPECT_EQ(grad_test_op->Input("Out1"), "out1");
EXPECT_EQ(grad_test_op->Inputs("Out2_mult"),
std::vector<std::string>({"out2_1", "out2_2"}));
EXPECT_EQ(grad_test_op->Input("Out1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Inputs("Out2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>(
{"out2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_3" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(grad_test_op->Output("In3" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in3" + f::OperatorBase::GRAD_VAR_SUFFIX());
}
TEST(GradOpBuilder, IOIgnoredInGradient) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 3, 5}},
{"output_format", std::vector<int>{0, 2, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"io_ignored", {"in1", "in2_1", "in2_2", "in3_1", "in3_2"},
{"out1_1", "out1_2", "out2"}, attrs));
std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op);
// 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({f::OperatorBase::EMPTY_VAR_NAME(),
f::OperatorBase::EMPTY_VAR_NAME()}));
EXPECT_EQ(grad_test_op->Inputs("In3_mult"),
std::vector<std::string>({"in3_1", "in3_2"}));
EXPECT_EQ(grad_test_op->Inputs("Out1_mult"),
std::vector<std::string>({"out1_1", "out1_2"}));
EXPECT_EQ(grad_test_op->Input("Out2"), f::OperatorBase::EMPTY_VAR_NAME());
EXPECT_EQ(
grad_test_op->Inputs("Out1_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>(
{"out1_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out1_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(grad_test_op->Input("Out2" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out2" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
EXPECT_EQ(
grad_test_op->Outputs("In3_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()),
std::vector<std::string>({"in3_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in3_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
}
...@@ -306,8 +306,7 @@ class OpRegistry { ...@@ -306,8 +306,7 @@ class OpRegistry {
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) { static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops"); "Use framework::Backward to get backward ops");
GradOpBuilder builder(op); std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
std::shared_ptr<OperatorBase> grad_op(builder.Build());
grad_op->Init(); grad_op->Init();
return grad_op; return grad_op;
} }
......
...@@ -55,6 +55,10 @@ class OperatorBase { ...@@ -55,6 +55,10 @@ class OperatorBase {
/// e.g. Variable "x@GRAD" is the gradient of varibale "x". /// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; } static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }
static std::string GRAD_VAR_NAME(const std::string& name) {
return name + GRAD_VAR_SUFFIX();
}
/// Variables with this suffix are supposed to be filled up with zeros. /// Variables with this suffix are supposed to be filled up with zeros.
static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; } static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; }
......
...@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License"); ...@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
...@@ -17,19 +17,19 @@ limitations under the License. */ ...@@ -17,19 +17,19 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h" #include "pybind11/numpy.h"
#include "pybind11/pybind11.h" #include "pybind11/pybind11.h"
#include "pybind11/stl.h" #include "pybind11/stl.h"
namespace py = pybind11; namespace py = pybind11;
namespace pd = paddle::framework;
USE_OP(add_two); USE_OP(add_two);
USE_OP(onehot_cross_entropy); USE_OP(onehot_cross_entropy);
...@@ -41,17 +41,18 @@ USE_OP(sigmoid); ...@@ -41,17 +41,18 @@ USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
USE_OP(rowwise_add); USE_OP(rowwise_add);
USE_OP_WITHOUT_KERNEL(recurrent_op); USE_OP_WITHOUT_KERNEL(recurrent_op);
namespace paddle {
namespace framework {
template <typename ClassType> template <typename ClassType>
void ExposeOperator(ClassType& m) { void ExposeOperator(ClassType &m) {
m.def("infer_shape", &ClassType::type::InferShape) m.def("infer_shape", &ClassType::type::InferShape)
.def("run", &ClassType::type::Run) .def("run", &ClassType::type::Run)
.def("type", .def("type",
[](const typename ClassType::type& op) -> std::string { [](const typename ClassType::type &op) -> std::string {
return op.type_; return op.type_;
}) })
.def("outputs", .def("outputs",
[](const typename ClassType::type& op) -> std::vector<std::string> { [](const typename ClassType::type &op) -> std::vector<std::string> {
return op.outputs_; return op.outputs_;
}) })
.def("__str__", &ClassType::type::DebugString); .def("__str__", &ClassType::type::DebugString);
...@@ -73,80 +74,72 @@ bool IsCompileGPU() { ...@@ -73,80 +74,72 @@ bool IsCompileGPU() {
PYBIND11_PLUGIN(core) { PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of PaddlePaddle"); py::module m("core", "C++ core of PaddlePaddle");
py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol()) py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
.def_buffer([](pd::Tensor& self) -> py::buffer_info { .def_buffer(
return paddle::pybind::CastToPyBuffer(self); [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
})
.def("get_dims", .def("get_dims",
[](const pd::Tensor& self) { return pd::vectorize(self.dims()); }) [](const Tensor &self) { return vectorize(self.dims()); })
.def("set_dims", .def("set_dims",
[](pd::Tensor& self, const std::vector<int>& dim) { [](Tensor &self, const std::vector<int> &dim) {
self.Resize(pd::make_ddim(dim)); self.Resize(make_ddim(dim));
}) })
.def("alloc_float", .def("alloc_float",
[](pd::Tensor& self, paddle::platform::GPUPlace& place) { [](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<float>(place); self.mutable_data<float>(place);
}) })
.def("alloc_float", .def("alloc_float",
[](pd::Tensor& self, paddle::platform::CPUPlace& place) { [](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<float>(place); self.mutable_data<float>(place);
}) })
.def("alloc_int", .def("alloc_int",
[](pd::Tensor& self, paddle::platform::CPUPlace& place) { [](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<int>(place); self.mutable_data<int>(place);
}) })
.def("alloc_int", .def("alloc_int",
[](pd::Tensor& self, paddle::platform::GPUPlace& place) { [](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<int>(place); self.mutable_data<int>(place);
}) })
.def("set", paddle::pybind::PyCPUTensorSetFromArray<float>) .def("set", PyCPUTensorSetFromArray<float>)
.def("set", paddle::pybind::PyCPUTensorSetFromArray<int>) .def("set", PyCPUTensorSetFromArray<int>)
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
.def("set", paddle::pybind::PyCUDATensorSetFromArray<float>) .def("set", PyCUDATensorSetFromArray<float>)
.def("set", paddle::pybind::PyCUDATensorSetFromArray<int>) .def("set", PyCUDATensorSetFromArray<int>)
#endif #endif
.def("shape", .def("shape", [](Tensor &self) { return vectorize(self.dims()); });
[](pd::Tensor& self) { return pd::vectorize(self.dims()); });
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class. py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle. All parameter, weight, gradient are variables in Paddle.
)DOC") )DOC")
.def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); }) .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
.def("set_int", .def("set_int",
[](pd::Variable& var, int val) -> void { [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
*var.GetMutable<int>() = val; .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
})
.def("get_int",
[](const pd::Variable& var) -> int { return var.Get<int>(); })
.def("get_tensor", .def("get_tensor",
[](pd::Variable& self) -> pd::Tensor* { [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
return self.GetMutable<pd::Tensor>();
},
py::return_value_policy::reference) py::return_value_policy::reference)
.def("get_net", .def("get_net",
[](pd::Variable& self) -> pd::NetOp* { [](Variable &self) -> ops::NetOp * {
return self.GetMutable<pd::NetOp>(); return self.GetMutable<ops::NetOp>();
}, },
py::return_value_policy::reference); py::return_value_policy::reference);
py::class_<pd::Scope>(m, "Scope", "") py::class_<Scope>(m, "Scope", "")
.def("new_var", .def("new_var",
[](pd::Scope& self, const std::string& name) -> pd::Variable* { [](Scope &self, const std::string &name) -> Variable * {
return self.NewVar(name); return self.NewVar(name);
}, },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>()) .def(py::init<>())
.def("new_scope", .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
[](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("drop_kids", &pd::Scope::DropKids); .def("drop_kids", &Scope::DropKids);
//! @note: Be careful! PyBind will return std::string as an unicode, not //! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python. //! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> { m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto& protos = pd::OpRegistry::protos(); auto &protos = OpRegistry::protos();
std::vector<py::bytes> ret_values; std::vector<py::bytes> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) { for (auto it = protos.begin(); it != protos.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(), PADDLE_ENFORCE(it->second.IsInitialized(),
...@@ -161,8 +154,8 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -161,8 +154,8 @@ All parameter, weight, gradient are variables in Paddle.
m.def_submodule( m.def_submodule(
"var_names", "var_names",
"The module will return special predefined variable name in Paddle") "The module will return special predefined variable name in Paddle")
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME) .def("empty", OperatorBase::EMPTY_VAR_NAME)
.def("temp", pd::OperatorBase::TMP_VAR_NAME); .def("temp", OperatorBase::TMP_VAR_NAME);
// clang-format off // clang-format off
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext") py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
.def_static("create", .def_static("create",
...@@ -185,43 +178,45 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -185,43 +178,45 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>()); py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>());
py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base( py::class_<OperatorBase, std::shared_ptr<OperatorBase>> operator_base(
m, "Operator"); m, "Operator");
operator_base.def_static("create", [](py::bytes protobin) { operator_base.def_static("create", [](py::bytes protobin) {
pd::OpDesc desc; OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc"); "Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(), PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s", "User OpDesc is not initialized, reason %s",
desc.InitializationErrorString()); desc.InitializationErrorString());
return pd::OpRegistry::CreateOp(desc); return OpRegistry::CreateOp(desc);
}); });
operator_base.def("backward", operator_base.def("backward",
[](const pd::OperatorBase& forwardOp, [](const OperatorBase &forwardOp,
const std::unordered_set<std::string>& no_grad_vars) { const std::unordered_set<std::string> &no_grad_vars) {
return pd::Backward(forwardOp, no_grad_vars); return Backward(forwardOp, no_grad_vars);
}); });
ExposeOperator(operator_base); ExposeOperator(operator_base);
py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net"); py::class_<ops::NetOp, std::shared_ptr<ops::NetOp>> net(m, "Net");
net.def_static("create", net.def_static("create",
[]() -> std::shared_ptr<pd::NetOp> { []() -> std::shared_ptr<ops::NetOp> {
auto retv = std::make_shared<pd::NetOp>(); auto retv = std::make_shared<ops::NetOp>();
retv->type_ = "plain_net"; retv->type_ = "plain_net";
return retv; return retv;
}) })
.def("add_op", &pd::NetOp::AddOp) .def("add_op", &ops::NetOp::AddOp)
.def("add_op", .def(
[](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void { "add_op",
self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net)); [](ops::NetOp &self, const std::shared_ptr<ops::NetOp> &net) -> void {
}) self.AddOp(std::static_pointer_cast<OperatorBase>(net));
.def("complete_add_op", &pd::NetOp::CompleteAddOp) })
.def("complete_add_op", &ops::NetOp::CompleteAddOp)
.def("complete_add_op", .def("complete_add_op",
[](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); }); [](std::shared_ptr<ops::NetOp> &self) { self->CompleteAddOp(); });
ExposeOperator(net); ExposeOperator(net);
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
...@@ -230,3 +225,5 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -230,3 +225,5 @@ All parameter, weight, gradient are variables in Paddle.
return m.ptr(); return m.ptr();
} }
} // namespace framework
} // namespace paddle
...@@ -26,19 +26,17 @@ limitations under the License. */ ...@@ -26,19 +26,17 @@ limitations under the License. */
#include "unsupported/Eigen/CXX11/Tensor" #include "unsupported/Eigen/CXX11/Tensor"
namespace paddle { namespace paddle {
namespace pybind {
namespace details { // forward declare
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
} // namespace details
} // namespace pybind
namespace framework { namespace framework {
namespace details {
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
}
class Tensor { class Tensor {
public: public:
template <bool less, size_t i, typename... args> template <bool less, size_t i, typename... args>
friend struct paddle::pybind::details::CastToPyBufferImpl; friend struct details::CastToPyBufferImpl;
template <typename T, size_t D, int MajorType, typename IndexType> template <typename T, size_t D, int MajorType, typename IndexType>
friend struct EigenTensor; friend struct EigenTensor;
......
...@@ -23,7 +23,7 @@ namespace py = pybind11; ...@@ -23,7 +23,7 @@ namespace py = pybind11;
namespace paddle { namespace paddle {
namespace pybind { namespace framework {
namespace details { namespace details {
...@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> { ...@@ -63,11 +63,8 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
} }
return py::buffer_info( return py::buffer_info(
dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()), dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()),
sizeof(CUR_TYPE), sizeof(CUR_TYPE), py::format_descriptor<CUR_TYPE>::format(),
py::format_descriptor<CUR_TYPE>::format(), (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
(size_t)framework::arity(dst_tensor.dims()),
dims_outside,
strides);
} else { } else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value; constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor); return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
...@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray( ...@@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray(
self.Resize(framework::make_ddim(dims)); self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place); auto *dst = self.mutable_data<T>(place);
paddle::platform::GpuMemcpySync( paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); cudaMemcpyHostToDevice);
} }
#endif #endif
......
...@@ -443,7 +443,7 @@ template<class T> ...@@ -443,7 +443,7 @@ template<class T>
void BaseMatrixT<T>::clip(T p1, T p2) { applyUnary(unary::Clip<T>(p1, p2)); } void BaseMatrixT<T>::clip(T p1, T p2) { applyUnary(unary::Clip<T>(p1, p2)); }
DEFINE_MATRIX_BINARY_PARAMETER_OP(ClipDerivative, TWO_PARAMETER, DEFINE_MATRIX_BINARY_PARAMETER_OP(ClipDerivative, TWO_PARAMETER,
a = b < p1 ? 0 : (b > p2 ? 0 : 1)); a = b < p1 ? 0 : (b > p2 ? 0 : 1));
template<class T> template<class T>
void BaseMatrixT<T>::clipDerivative(BaseMatrixT& b, T p1, T p2) { void BaseMatrixT<T>::clipDerivative(BaseMatrixT& b, T p1, T p2) {
applyBinary(binary::ClipDerivative<T>(p1, p2), b); applyBinary(binary::ClipDerivative<T>(p1, p2), b);
......
...@@ -41,6 +41,9 @@ function(op_library TARGET) ...@@ -41,6 +41,9 @@ function(op_library TARGET)
endif() endif()
endfunction() endfunction()
cc_library(net_op SRCS net_op.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
op_library(add_op SRCS add_op.cc add_op.cu) op_library(add_op SRCS add_op.cc add_op.cu)
cc_test(add_op_test SRCS add_op_test.cc DEPS add_op) cc_test(add_op_test SRCS add_op_test.cc DEPS add_op)
...@@ -59,6 +62,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) ...@@ -59,6 +62,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(fc_op op_library(fc_op
SRCS fc_op.cc SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net) DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op)
op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net) op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net_op)
cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op) cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)
...@@ -47,7 +47,7 @@ public: ...@@ -47,7 +47,7 @@ public:
T ig_size = (T)framework::product(IG->dims()); T ig_size = (T)framework::product(IG->dims());
EigenVector<T>::Flatten(*IG).device((context.GetEigenDevice<Place>())) = EigenVector<T>::Flatten(*IG).device(context.GetEigenDevice<Place>()) =
EigenScalar<T>::From(*OG) / ig_size; EigenScalar<T>::From(*OG) / ig_size;
} }
}; };
......
...@@ -14,11 +14,11 @@ ...@@ -14,11 +14,11 @@
limitations under the License. limitations under the License.
*/ */
#include "paddle/framework/net.h" #include "paddle/operators/net_op.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
void NetOp::CompleteAddOp(bool calc) { void NetOp::CompleteAddOp(bool calc) {
add_op_done_ = true; add_op_done_ = true;
...@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const { ...@@ -74,5 +74,5 @@ std::string NetOp::DebugString() const {
bool NetOp::IsNetOp() const { return true; } bool NetOp::IsNetOp() const { return true; }
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -14,15 +14,17 @@ limitations under the License. */ ...@@ -14,15 +14,17 @@ limitations under the License. */
#pragma once #pragma once
#include <paddle/framework/op_desc.pb.h> #include "paddle/framework/op_desc.pb.h"
#include <paddle/framework/operator.h>
#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/operators/type_alias.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
/** /**
* @brief Network is also a type of Operator * @brief Network is also a type of Operator
* *
...@@ -37,13 +39,13 @@ namespace framework { ...@@ -37,13 +39,13 @@ namespace framework {
* This is the base class of network, all the networks should implement the APIs * This is the base class of network, all the networks should implement the APIs
* it defines. * it defines.
*/ */
class NetOp : public OperatorBase { class NetOp : public framework::OperatorBase {
public: public:
/** /**
* Infer all the operators' input and output variables' shapes, will be called * Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch * before every mini-batch
*/ */
void InferShape(const Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->InferShape(scope); op->InferShape(scope);
} }
...@@ -56,7 +58,7 @@ class NetOp : public OperatorBase { ...@@ -56,7 +58,7 @@ class NetOp : public OperatorBase {
* scope will be used instead. If no OpContext is provicded, default context * scope will be used instead. If no OpContext is provicded, default context
* will be used. * will be used.
*/ */
void Run(const Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
for (auto& op : ops_) { for (auto& op : ops_) {
op->Run(scope, dev_ctx); op->Run(scope, dev_ctx);
...@@ -88,7 +90,7 @@ class NetOp : public OperatorBase { ...@@ -88,7 +90,7 @@ class NetOp : public OperatorBase {
std::vector<std::shared_ptr<OperatorBase>> ops_; std::vector<std::shared_ptr<OperatorBase>> ops_;
private: private:
bool add_op_done_{false}; bool add_op_done_{false};
template <typename T, typename KeyType> template <typename T, typename KeyType>
...@@ -97,5 +99,5 @@ class NetOp : public OperatorBase { ...@@ -97,5 +99,5 @@ class NetOp : public OperatorBase {
} }
}; };
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
#include "paddle/operators/net_op.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <paddle/framework/net.h>
#include <paddle/framework/op_registry.h> #include "paddle/framework/op_registry.h"
#include <paddle/framework/operator.h> #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace operators {
static int infer_shape_cnt = 0; static int infer_shape_cnt = 0;
static int run_cnt = 0; static int run_cnt = 0;
class TestOp : public OperatorBase { class TestOp : public OperatorBase {
public: public:
void InferShape(const framework::Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
++infer_shape_cnt; ++infer_shape_cnt;
} }
...@@ -21,7 +23,7 @@ class TestOp : public OperatorBase { ...@@ -21,7 +23,7 @@ class TestOp : public OperatorBase {
}; };
class EmptyOp : public OperatorBase { class EmptyOp : public OperatorBase {
public: public:
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
...@@ -73,7 +75,7 @@ TEST(OpKernel, all) { ...@@ -73,7 +75,7 @@ TEST(OpKernel, all) {
ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet); ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet);
} }
TEST(Net, insert_op) { TEST(NetOp, insert_op) {
NetOp net; NetOp net;
auto op1 = std::make_shared<EmptyOp>(); auto op1 = std::make_shared<EmptyOp>();
op1->inputs_ = {"x", "w1", "b1"}; op1->inputs_ = {"x", "w1", "b1"};
...@@ -85,5 +87,5 @@ TEST(Net, insert_op) { ...@@ -85,5 +87,5 @@ TEST(Net, insert_op) {
ASSERT_EQ(3UL, net.ops_.size()); ASSERT_EQ(3UL, net.ops_.size());
} }
} // namespace framework } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -18,8 +18,8 @@ ...@@ -18,8 +18,8 @@
#include <cstring> #include <cstring>
#include <sstream> #include <sstream>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
namespace paddle { namespace paddle {
......
...@@ -11,14 +11,15 @@ ...@@ -11,14 +11,15 @@
limitations under the License. limitations under the License.
*/ */
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/operators/recurrent_op.h" #include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/softmax_op.h" #include "paddle/operators/softmax_op.h"
...@@ -20,12 +20,13 @@ namespace operators { ...@@ -20,12 +20,13 @@ namespace operators {
class SoftmaxOp : public OperatorWithKernel { class SoftmaxOp : public OperatorWithKernel {
protected: protected:
void InferShape(const InferShapeContext &ctx) const override { void InferShape(const InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Only one input is need for softmax"); PADDLE_ENFORCE(ctx.InputSize() == 1UL,
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims().size() == 2, "Only one input is need for softmax");
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be matrix"); "The input of softmax op must be matrix");
PADDLE_ENFORCE(ctx.OutputSize() == 1, PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Only one output is need for softmax"); "Only one output is need for softmax");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
...@@ -41,10 +42,19 @@ public: ...@@ -41,10 +42,19 @@ public:
class SoftmaxOpGrad : public OperatorWithKernel { class SoftmaxOpGrad : public OperatorWithKernel {
protected: protected:
void InferShape(const InferShapeContext &ctx) const override {} void InferShape(const InferShapeContext &ctx) const override {
std::string DebugString() const override { PADDLE_ENFORCE(ctx.InputSize() == 3UL,
LOG(INFO) << "SoftmaxOpGrad"; "Input of SoftmaxOpGrad should be 3, X, Y, YG");
return ""; PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Output of SoftmaxOpGrad should be 1");
PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null");
PADDLE_ENFORCE(ctx.InputVar(GRAD_VAR_NAME("Y")) != nullptr,
"Input(Y@GRAD) should not be null");
PADDLE_ENFORCE(ctx.Input<Tensor>("Y")->dims() ==
ctx.Input<Tensor>(GRAD_VAR_NAME("Y"))->dims(),
"the shape of Input(0) and Input(1) should be the same");
ctx.Output<Tensor>(GRAD_VAR_NAME("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
} }
}; };
...@@ -52,5 +62,7 @@ protected: ...@@ -52,5 +62,7 @@ protected:
} // namespace paddle } // namespace paddle
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker); REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel<ops::CPUPlace, float>); REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel<ops::CPUPlace, float>);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax_grad,
ops::SoftmaxGradKernel<ops::CPUPlace, float>);
...@@ -17,3 +17,4 @@ ...@@ -17,3 +17,4 @@
#include "paddle/operators/softmax_op.h" #include "paddle/operators/softmax_op.h"
REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel<ops::GPUPlace, float>); REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel<ops::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(softmax_grad, ops::SoftmaxGradKernel<ops::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/ddim.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/type_alias.h" #include "paddle/operators/type_alias.h"
namespace paddle { namespace paddle {
...@@ -23,8 +26,8 @@ template <typename Place, typename T> ...@@ -23,8 +26,8 @@ template <typename Place, typename T>
class SoftmaxKernel : public OpKernel { class SoftmaxKernel : public OpKernel {
public: public:
void Compute(const ExecutionContext& context) const override { void Compute(const ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0); auto input = context.Input<Tensor>("X");
auto output = context.Output<Tensor>(0); auto output = context.Output<Tensor>("Y");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
auto logits = EigenMatrix<T>::From(*input); auto logits = EigenMatrix<T>::From(*input);
...@@ -57,5 +60,38 @@ public: ...@@ -57,5 +60,38 @@ public:
.broadcast(one_by_class)); .broadcast(one_by_class));
} }
}; };
template <typename Place, typename T>
class SoftmaxGradKernel : public OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
std::shared_ptr<Tensor> scale_ = std::make_shared<Tensor>();
auto Y = context.Input<Tensor>("Y");
auto dY = context.Input<Tensor>(OperatorBase::GRAD_VAR_NAME("Y"));
auto dX = context.Output<Tensor>(OperatorBase::GRAD_VAR_NAME("X"));
dX->mutable_data<T>(context.GetPlace());
const int batch_size = Y->dims()[0];
const int class_num = Y->dims()[1];
Eigen::DSizes<int, 1> along_class(1);
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
Eigen::DSizes<int, 2> one_by_class(1, class_num);
auto Y_eigen = EigenMatrix<T>::From(*Y);
auto dY_eigen = EigenMatrix<T>::From(*dY);
auto dX_eigen = EigenMatrix<T>::From(*dX);
auto place = context.GetEigenDevice<Place>();
auto dot = (Y_eigen * dY_eigen)
.sum(along_class)
.eval()
.reshape(batch_by_one)
.broadcast(one_by_class);
dX_eigen.device(place) = (dY_eigen - dot) * Y_eigen;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -15,13 +15,14 @@ ...@@ -15,13 +15,14 @@
#pragma once #pragma once
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using OpKernel = framework::OpKernel; using OpKernel = framework::OpKernel;
using OperatorBase = framework::OperatorBase;
using InferShapeContext = framework::InferShapeContext; using InferShapeContext = framework::InferShapeContext;
using ExecutionContext = framework::ExecutionContext; using ExecutionContext = framework::ExecutionContext;
using Variable = framework::Variable; using Variable = framework::Variable;
...@@ -43,15 +44,16 @@ template <typename T, ...@@ -43,15 +44,16 @@ template <typename T,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>; using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using Scope = framework::Scope;
using OperatorWithKernel = framework::OperatorWithKernel; using OperatorWithKernel = framework::OperatorWithKernel;
using OperatorBase = framework::OperatorBase;
using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker; using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker;
using OpProto = framework::OpProto; using OpProto = framework::OpProto;
using OpAttrChecker = framework::OpAttrChecker; using OpAttrChecker = framework::OpAttrChecker;
using CPUPlace = platform::CPUPlace; using CPUPlace = platform::CPUPlace;
using GPUPlace = platform::GPUPlace; using GPUPlace = platform::GPUPlace;
using NetOp = framework::NetOp;
using OpRegistry = framework::OpRegistry; using OpRegistry = framework::OpRegistry;
using OperatorBase = framework::OperatorBase;
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -69,7 +69,7 @@ cat <<EOF ...@@ -69,7 +69,7 @@ cat <<EOF
Installing ... Installing ...
======================================== ========================================
EOF EOF
make install make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version paddle version
...@@ -122,7 +122,7 @@ cat <<EOF ...@@ -122,7 +122,7 @@ cat <<EOF
Generating .deb package ... Generating .deb package ...
======================================== ========================================
EOF EOF
cpack -D CPACK_GENERATOR='DEB' .. cpack -D CPACK_GENERATOR='DEB' -j `nproc` ..
cat <<EOF cat <<EOF
......
...@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build ...@@ -6,14 +6,14 @@ mkdir -p $TRAVIS_BUILD_DIR/build
cd $TRAVIS_BUILD_DIR/build cd $TRAVIS_BUILD_DIR/build
# Compile paddle binaries first # Compile paddle binaries first
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_GOLANG=ON -DWITH_STYLE_CHECK=OFF cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_GOLANG=ON -DWITH_STYLE_CHECK=OFF
mkdir output mkdir output
make -j `nproc` make -j `nproc`
find .. -name '*whl' | xargs pip install # install all wheels. find .. -name '*whl' | xargs pip install # install all wheels.
rm -rf * rm -rf *
# Compile Documentation only. # Compile Documentation only.
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=ON cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON
make -j `nproc` paddle_docs paddle_docs_cn make -j `nproc` paddle_docs paddle_docs_cn
# check websites for broken links # check websites for broken links
......
import unittest import unittest
from op_test_util import OpTestMeta
import numpy as np import numpy as np
import paddle.v2.framework.core as core
import paddle.v2.framework.create_op_creation_methods as creation
from op_test_util import OpTestMeta
def stable_softmax(x): def stable_softmax(x):
...@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase): ...@@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase):
self.Y = np.apply_along_axis(stable_softmax, 1, self.X) self.Y = np.apply_along_axis(stable_softmax, 1, self.X)
class TestSoftmaxGradOp(unittest.TestCase):
def test_softmax_grad(self):
op = creation.op_creations.softmax(X="X", Y="Y")
backward_op = core.Operator.backward(op, set())
self.assertEqual(backward_op.type(), "softmax_grad")
expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
self.assertEqual(expected, str(backward_op))
batch_size = 3
class_num = 5
# Initialize X and add 1e-2 for numerical stability
Y = np.random.rand(batch_size, class_num).astype(np.float32)
Y = Y + 1e-2
dY = np.random.rand(batch_size, class_num).astype(np.float32)
# Reference implementation of cross entropy with soft labels
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(batch_size):
d = np.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
expected = label_softmax_grad(Y, dY)
scope = core.Scope()
places = []
places.append(core.CPUPlace())
if core.is_compile_gpu():
places.append(core.GPUPlace(0))
for place in places:
y = scope.new_var("Y")
y_tensor = y.get_tensor()
y_tensor.set_dims([batch_size, class_num])
y_tensor.alloc_float(place)
y_tensor.set(Y, place)
dy = scope.new_var("Y@GRAD")
dy_tensor = dy.get_tensor()
dy_tensor.set_dims([batch_size, class_num])
dy_tensor.alloc_float(place)
dy_tensor.set(dY, place)
x = scope.new_var("X")
dx = scope.new_var("X@GRAD")
tensor = scope.find_var("X@GRAD").get_tensor()
backward_op.infer_shape(scope)
self.assertEqual([batch_size, class_num], tensor.shape())
ctx = core.DeviceContext.create(place)
backward_op.run(scope, ctx)
actual = np.array(tensor)
np.testing.assert_almost_equal(actual, expected, decimal=3)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册