提交 42b0748a 编写于 作者: F fengjiayi

add unittest

上级 974183b4
......@@ -113,6 +113,7 @@ class GradientClipByNorm(BaseGradientClipAttr):
class GradientClipByGlobalNorm(BaseGradientClipAttr):
global_norm_var = None
local_norm_var = None
clip_norm_var = None
scale_var = None
......@@ -123,12 +124,18 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
cls.global_norm_var = layers.fill_constant(
shape=[1], dtype="float32", value=0.0)
cls.local_norm_var = framework.default_main_program().current_block(
).create_var(
name=framework.unique_name("local_norm"),
dtype="float32",
persistable=False)
cls.clip_norm_var = layers.fill_constant(
shape=[1], dtype="float32", value=clip_norm)
@classmethod
def check_init(cls):
if not (isinstance(cls.global_norm_var, framework.Variable) and
isinstance(cls.local_norm_var, framework.Variable) and
isinstance(cls.clip_norm_var, framework.Variable)):
raise ValueError(
"Class 'GradientClipByGlobalNorm' has not been properly initialized. \
......@@ -138,9 +145,10 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
cls = self.__class__
cls.check_init()
local_norm_var = layers.reduce_sum(input=layers.pow(x=grad, factor=2.0))
cls.local_norm_var = layers.reduce_sum(
input=layers.pow(x=grad, factor=2.0))
layers.sums(
input=[local_norm_var, cls.global_norm_var],
input=[cls.local_norm_var, cls.global_norm_var],
out=[cls.global_norm_var])
def create_operators(self, param, grad):
......@@ -148,7 +156,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
cls.check_init()
if cls.scale_var is None:
cls.global_norm_var = layers.sqrt(x=cls.global_norm_var)
layers.sqrt(x=cls.global_norm_var, out=cls.global_norm_var)
cls.scale_var = layers.elementwise_div(
x=cls.clip_norm_var,
y=layers.elementwise_max(
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
def _get_global_param_norm_(params_grads):
res = fluid.layers.fill_constant(shape=[1], dtype="float32", value=0.0)
for _, grad in params_grads:
norm_var = fluid.layers.reduce_sum(
input=fluid.layers.pow(x=grad, factor=2.0))
fluid.layers.sums(input=[norm_var, res], out=[res])
fluid.layers.sqrt(x=res, out=res)
return res
BATCH_SIZE = 128
CLIP = 0.5
prog = fluid.framework.Program()
with fluid.program_guard(main_program=prog):
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
prog_clip = prog.clone()
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
p_g = fluid.backward.append_backward(loss=avg_cost)
p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)
with fluid.program_guard(main_program=prog):
gloabl_norm = _get_global_param_norm_(p_g)
with fluid.program_guard(main_program=prog_clip):
fluid.clip.gradient_clip_by_global_norm(clip_norm=CLIP)
p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
gloabl_norm_clip = _get_global_param_norm_(p_g_clip)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
exe.run(fluid.default_startup_program())
count = 0
for data in train_reader():
count += 1
if count > 5:
break
out, = exe.run(prog, feed=feeder.feed(data), fetch_list=[gloabl_norm])
out_clip, = exe.run(prog_clip,
feed=feeder.feed(data),
fetch_list=[gloabl_norm_clip])
if not np.allclose(out_clip, np.minimum(out, np.array([CLIP]))):
exit(1)
exit(0)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册