Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
428d6f9f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
428d6f9f
编写于
2月 15, 2019
作者:
Q
qingqing01
提交者:
Dang Qingqing
2月 15, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix debug mode in prior_box_op (#15702)
test=release/1.3 * Fix debug mode in prior_box_op * Refine code
上级
af4c9b5b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
36 addition
and
46 deletion
+36
-46
paddle/fluid/operators/detection/density_prior_box_op.h
paddle/fluid/operators/detection/density_prior_box_op.h
+6
-7
paddle/fluid/operators/detection/prior_box_op.h
paddle/fluid/operators/detection/prior_box_op.h
+30
-39
未找到文件。
paddle/fluid/operators/detection/density_prior_box_op.h
浏览文件 @
428d6f9f
...
...
@@ -72,7 +72,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
in
t
i
=
0
;
i
<
fixed_ratios
.
size
();
i
++
)
{
for
(
size_
t
i
=
0
;
i
<
fixed_ratios
.
size
();
i
++
)
{
sqrt_fixed_ratios
.
push_back
(
sqrt
(
fixed_ratios
[
i
]));
}
...
...
@@ -115,11 +115,10 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
}
}
if
(
clip
)
{
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
ClipFunctor
<
T
>
clip_func
;
trans
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
boxes
->
data
<
T
>
(),
boxes
->
data
<
T
>
()
+
boxes
->
numel
(),
boxes
->
data
<
T
>
(),
clip_func
);
T
*
dt
=
boxes
->
data
<
T
>
();
std
::
transform
(
dt
,
dt
+
boxes
->
numel
(),
dt
,
[](
T
v
)
->
T
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
v
,
0.
),
1.
);
});
}
framework
::
Tensor
var_t
;
var_t
.
mutable_data
<
T
>
(
...
...
@@ -141,7 +140,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
#pragma omp parallel for collapse(2)
#endif
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
for
(
in
t
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
for
(
size_
t
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
e_vars
(
i
,
j
)
=
variances
[
j
];
}
}
...
...
paddle/fluid/operators/detection/prior_box_op.h
浏览文件 @
428d6f9f
...
...
@@ -46,13 +46,6 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
}
}
template
<
typename
T
>
struct
ClipFunctor
{
HOSTDEVICE
inline
T
operator
()(
T
in
)
const
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
in
,
0.
),
1.
);
}
};
template
<
typename
T
>
class
PriorBoxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -101,31 +94,30 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
);
T
*
b_t
=
boxes
->
data
<
T
>
(
);
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
T
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
T
box_width
,
box_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
if
(
min_max_aspect_ratios_order
)
{
box_width
=
box_height
=
min_size
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
if
(
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
aspect_ratios
.
size
();
++
r
)
{
...
...
@@ -135,11 +127,11 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
}
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
}
else
{
// priors with different aspect ratios
...
...
@@ -147,21 +139,21 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
float
ar
=
aspect_ratios
[
r
];
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
if
(
max_sizes
.
size
()
>
0
)
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x
-
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y
-
box_height
)
/
img_height
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x
+
box_width
)
/
img_width
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
b_t
[
0
]
=
(
center_x
-
box_width
)
/
img_width
;
b_t
[
1
]
=
(
center_y
-
box_height
)
/
img_height
;
b_t
[
2
]
=
(
center_x
+
box_width
)
/
img_width
;
b_t
[
3
]
=
(
center_y
+
box_height
)
/
img_height
;
b_t
+=
4
;
}
}
}
...
...
@@ -169,11 +161,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
}
if
(
clip
)
{
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
ClipFunctor
<
T
>
clip_func
;
trans
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
boxes
->
data
<
T
>
(),
boxes
->
data
<
T
>
()
+
boxes
->
numel
(),
boxes
->
data
<
T
>
(),
clip_func
);
T
*
dt
=
boxes
->
data
<
T
>
();
std
::
transform
(
dt
,
dt
+
boxes
->
numel
(),
dt
,
[](
T
v
)
->
T
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
v
,
0.
),
1.
);
});
}
framework
::
Tensor
var_t
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录