未验证 提交 41ca7cad 编写于 作者: W wangxinxin08 提交者: GitHub

add onnx infer for ppyoloe_r (#7457)

上级 964643ee
......@@ -123,6 +123,21 @@ python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_di
**注意:**
- 使用Paddle-TRT使用确保**PaddlePaddle版本为develop版本且TensorRT版本大于8.2**.
**使用ONNX Runtime进行部署**,执行以下命令:
```
# 导出模型
python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams export_onnx=True
# 安装paddle2onnx
pip install paddle2onnx
# 转换成onnx模型
paddle2onnx --model_dir output_inference/ppyoloe_r_crn_l_3x_dota --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_r_crn_l_3x_dota.onnx
# 预测图片
python configs/rotate/tools/onnx_infer.py --infer_cfg output_inference/ppyoloe_r_crn_l_3x_dota/infer_cfg.yml --onnx_file ppyoloe_r_crn_l_3x_dota.onnx --image_file demo/P0072__1.0__0___0.png
```
## 附录
......
......@@ -114,7 +114,7 @@ python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota
python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_dir=output_inference/ppyoloe_r_crn_l_3x_dota --run_mode=paddle --device=gpu
```
**Using Paddle-TRT** to for deployment, run following command
**Using Paddle-TRT** for deployment, run following command
``` bash
# export inference model
......@@ -126,6 +126,22 @@ python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_di
**Notes:**
- When using Paddle-TRT for speed testing, make sure that **the version of TensorRT is larger than 8.2 and the version of PaddlePaddle is the develop version**
**Using ONNX Runtime** for deployment, run following command
``` bash
# export inference model
python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams export_onnx=True
# install paddle2onnx
pip install paddle2onnx
# convert to onnx model
paddle2onnx --model_dir output_inference/ppyoloe_r_crn_l_3x_dota --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_r_crn_l_3x_dota.onnx
# inference single image
python configs/rotate/tools/onnx_infer.py --infer_cfg output_inference/ppyoloe_r_crn_l_3x_dota/infer_cfg.yml --onnx_file ppyoloe_r_crn_l_3x_dota.onnx --image_file demo/P0072__1.0__0___0.png
```
## Appendix
Ablation experiments of PP-YOLOE-R
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import six
import glob
import copy
import yaml
import argparse
import cv2
import numpy as np
from shapely.geometry import Polygon
from onnxruntime import InferenceSession
# preprocess ops
def decode_image(img_path):
with open(img_path, 'rb') as f:
im_read = f.read()
data = np.frombuffer(im_read, dtype='uint8')
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
img_info = {
"im_shape": np.array(
im.shape[:2], dtype=np.float32),
"scale_factor": np.array(
[1., 1.], dtype=np.float32)
}
return im, img_info
class Resize(object):
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
if isinstance(target_size, int):
target_size = [target_size, target_size]
self.target_size = target_size
self.keep_ratio = keep_ratio
self.interp = interp
def __call__(self, im, im_info):
assert len(self.target_size) == 2
assert self.target_size[0] > 0 and self.target_size[1] > 0
im_channel = im.shape[2]
im_scale_y, im_scale_x = self.generate_scale(im)
im = cv2.resize(
im,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
im_info['scale_factor'] = np.array(
[im_scale_y, im_scale_x]).astype('float32')
return im, im_info
def generate_scale(self, im):
origin_shape = im.shape[:2]
im_c = im.shape[2]
if self.keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(self.target_size)
target_size_max = np.max(self.target_size)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = self.target_size
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
class Permute(object):
def __init__(self, ):
super(Permute, self).__init__()
def __call__(self, im, im_info):
im = im.transpose((2, 0, 1))
return im, im_info
class NormalizeImage(object):
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
self.mean = mean
self.std = std
self.is_scale = is_scale
self.norm_type = norm_type
def __call__(self, im, im_info):
im = im.astype(np.float32, copy=False)
if self.is_scale:
scale = 1.0 / 255.0
im *= scale
if self.norm_type == 'mean_std':
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im -= mean
im /= std
return im, im_info
class PadStride(object):
def __init__(self, stride=0):
self.coarsest_stride = stride
def __call__(self, im, im_info):
coarsest_stride = self.coarsest_stride
if coarsest_stride <= 0:
return im, im_info
im_c, im_h, im_w = im.shape
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = im
return padding_im, im_info
class Compose:
def __init__(self, transforms):
self.transforms = []
for op_info in transforms:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
self.transforms.append(eval(op_type)(**new_op_info))
def __call__(self, img_path):
img, im_info = decode_image(img_path)
for t in self.transforms:
img, im_info = t(img, im_info)
inputs = copy.deepcopy(im_info)
inputs['image'] = img
return inputs
# postprocess
def rbox_iou(g, p):
g = np.array(g)
p = np.array(p)
g = Polygon(g[:8].reshape((4, 2)))
p = Polygon(p[:8].reshape((4, 2)))
g = g.buffer(0)
p = p.buffer(0)
if not g.is_valid or not p.is_valid:
return 0
inter = Polygon(g).intersection(Polygon(p)).area
union = g.area + p.area - inter
if union == 0:
return 0
else:
return inter / union
def multiclass_nms_rotated(pred_bboxes,
pred_scores,
iou_threshlod=0.1,
score_threshold=0.1):
"""
Args:
pred_bboxes (numpy.ndarray): [B, N, 8]
pred_scores (numpy.ndarray): [B, C, N]
Return:
bboxes (numpy.ndarray): [N, 10]
bbox_num (numpy.ndarray): [B]
"""
bbox_num = []
bboxes = []
for bbox_per_img, score_per_img in zip(pred_bboxes, pred_scores):
num_per_img = 0
for cls_id, score_per_cls in enumerate(score_per_img):
keep_mask = score_per_cls > score_threshold
bbox = bbox_per_img[keep_mask]
score = score_per_cls[keep_mask]
idx = score.argsort()[::-1]
bbox = bbox[idx]
score = score[idx]
keep_idx = []
for i, b in enumerate(bbox):
supressed = False
for gi in keep_idx:
g = bbox[gi]
if rbox_iou(b, g) > iou_threshlod:
supressed = True
break
if supressed:
continue
keep_idx.append(i)
keep_box = bbox[keep_idx]
keep_score = score[keep_idx]
keep_cls_ids = np.ones(len(keep_idx)) * cls_id
bboxes.append(
np.concatenate(
[keep_cls_ids[:, None], keep_score[:, None], keep_box],
axis=-1))
num_per_img += len(keep_idx)
bbox_num.append(num_per_img)
return np.concatenate(bboxes, axis=0), np.array(bbox_num)
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--image_file or --image_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
print("Found {} inference images in total.".format(len(images)))
return images
def predict_image(infer_config, predictor, img_list):
# load preprocess transforms
transforms = Compose(infer_config['Preprocess'])
# predict image
for img_path in img_list:
inputs = transforms(img_path)
inputs_name = [var.name for var in predictor.get_inputs()]
inputs = {k: inputs[k][None, ] for k in inputs_name}
outputs = predictor.run(output_names=None, input_feed=inputs)
bboxes, bbox_num = multiclass_nms_rotated(
np.array(outputs[0]), np.array(outputs[1]))
print("ONNXRuntime predict: ")
for bbox in bboxes:
if bbox[0] > -1 and bbox[1] > infer_config['draw_threshold']:
print(f"{int(bbox[0])} {bbox[1]} "
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}"
f"{bbox[6]} {bbox[7]} {bbox[8]} {bbox[9]}")
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml")
parser.add_argument(
'--onnx_file',
type=str,
default="model.onnx",
help="onnx model file path")
parser.add_argument("--image_dir", type=str)
parser.add_argument("--image_file", type=str)
return parser.parse_args()
if __name__ == '__main__':
FLAGS = parse_args()
# load image list
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
# load predictor
predictor = InferenceSession(FLAGS.onnx_file)
# load infer config
with open(FLAGS.infer_cfg) as f:
infer_config = yaml.safe_load(f)
predict_image(infer_config, predictor, img_list)
......@@ -44,7 +44,7 @@ class ESEAttn(nn.Layer):
@register
class PPYOLOERHead(nn.Layer):
__shared__ = ['num_classes', 'trt']
__shared__ = ['num_classes', 'trt', 'export_onnx']
__inject__ = ['static_assigner', 'assigner', 'nms']
def __init__(self,
......@@ -57,6 +57,7 @@ class PPYOLOERHead(nn.Layer):
use_varifocal_loss=True,
static_assigner_epoch=4,
trt=False,
export_onnx=False,
static_assigner='ATSSAssigner',
assigner='TaskAlignedAssigner',
nms='MultiClassNMS',
......@@ -84,6 +85,8 @@ class PPYOLOERHead(nn.Layer):
self.stem_cls = nn.LayerList()
self.stem_reg = nn.LayerList()
self.stem_angle = nn.LayerList()
trt = False if export_onnx else trt
self.export_onnx = export_onnx
act = get_act_fn(
act, trt=trt) if act is None or isinstance(act,
(str, dict)) else act
......@@ -415,5 +418,7 @@ class PPYOLOERHead(nn.Layer):
],
axis=-1).reshape([-1, 1, 8])
pred_bboxes /= scale_factor
if self.export_onnx:
return pred_bboxes, pred_scores
bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
return bbox_pred, bbox_num
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册