Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
41ca7cad
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
41ca7cad
编写于
12月 07, 2022
作者:
W
wangxinxin08
提交者:
GitHub
12月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add onnx infer for ppyoloe_r (#7457)
上级
964643ee
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
340 addition
and
2 deletion
+340
-2
configs/rotate/ppyoloe_r/README.md
configs/rotate/ppyoloe_r/README.md
+15
-0
configs/rotate/ppyoloe_r/README_en.md
configs/rotate/ppyoloe_r/README_en.md
+17
-1
configs/rotate/tools/onnx_infer.py
configs/rotate/tools/onnx_infer.py
+302
-0
ppdet/modeling/heads/ppyoloe_r_head.py
ppdet/modeling/heads/ppyoloe_r_head.py
+6
-1
未找到文件。
configs/rotate/ppyoloe_r/README.md
浏览文件 @
41ca7cad
...
...
@@ -123,6 +123,21 @@ python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_di
**注意:**
-
使用Paddle-TRT使用确保
**PaddlePaddle版本为develop版本且TensorRT版本大于8.2**
.
**使用ONNX Runtime进行部署**
,执行以下命令:
```
# 导出模型
python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams export_onnx=True
# 安装paddle2onnx
pip install paddle2onnx
# 转换成onnx模型
paddle2onnx --model_dir output_inference/ppyoloe_r_crn_l_3x_dota --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file ppyoloe_r_crn_l_3x_dota.onnx
# 预测图片
python configs/rotate/tools/onnx_infer.py --infer_cfg output_inference/ppyoloe_r_crn_l_3x_dota/infer_cfg.yml --onnx_file ppyoloe_r_crn_l_3x_dota.onnx --image_file demo/P0072__1.0__0___0.png
```
## 附录
...
...
configs/rotate/ppyoloe_r/README_en.md
浏览文件 @
41ca7cad
...
...
@@ -114,7 +114,7 @@ python tools/export_model.py -c configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota
python deploy/python/infer.py
--image_file
demo/P0072__1.0__0___0.png
--model_dir
=
output_inference/ppyoloe_r_crn_l_3x_dota
--run_mode
=
paddle
--device
=
gpu
```
**Using Paddle-TRT**
to
for deployment, run following command
**Using Paddle-TRT**
for deployment, run following command
```
bash
# export inference model
...
...
@@ -126,6 +126,22 @@ python deploy/python/infer.py --image_file demo/P0072__1.0__0___0.png --model_di
**Notes:**
-
When using Paddle-TRT for speed testing, make sure that
**the version of TensorRT is larger than 8.2 and the version of PaddlePaddle is the develop version**
**Using ONNX Runtime**
for deployment, run following command
```
bash
# export inference model
python tools/export_model.py
-c
configs/rotate/ppyoloe_r/ppyoloe_r_crn_l_3x_dota.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_l_3x_dota.pdparams
export_onnx
=
True
# install paddle2onnx
pip
install
paddle2onnx
# convert to onnx model
paddle2onnx
--model_dir
output_inference/ppyoloe_r_crn_l_3x_dota
--model_filename
model.pdmodel
--params_filename
model.pdiparams
--opset_version
11
--save_file
ppyoloe_r_crn_l_3x_dota.onnx
# inference single image
python configs/rotate/tools/onnx_infer.py
--infer_cfg
output_inference/ppyoloe_r_crn_l_3x_dota/infer_cfg.yml
--onnx_file
ppyoloe_r_crn_l_3x_dota.onnx
--image_file
demo/P0072__1.0__0___0.png
```
## Appendix
Ablation experiments of PP-YOLOE-R
...
...
configs/rotate/tools/onnx_infer.py
0 → 100644
浏览文件 @
41ca7cad
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
six
import
glob
import
copy
import
yaml
import
argparse
import
cv2
import
numpy
as
np
from
shapely.geometry
import
Polygon
from
onnxruntime
import
InferenceSession
# preprocess ops
def
decode_image
(
img_path
):
with
open
(
img_path
,
'rb'
)
as
f
:
im_read
=
f
.
read
()
data
=
np
.
frombuffer
(
im_read
,
dtype
=
'uint8'
)
im
=
cv2
.
imdecode
(
data
,
1
)
# BGR mode, but need RGB mode
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
img_info
=
{
"im_shape"
:
np
.
array
(
im
.
shape
[:
2
],
dtype
=
np
.
float32
),
"scale_factor"
:
np
.
array
(
[
1.
,
1.
],
dtype
=
np
.
float32
)
}
return
im
,
img_info
class
Resize
(
object
):
def
__init__
(
self
,
target_size
,
keep_ratio
=
True
,
interp
=
cv2
.
INTER_LINEAR
):
if
isinstance
(
target_size
,
int
):
target_size
=
[
target_size
,
target_size
]
self
.
target_size
=
target_size
self
.
keep_ratio
=
keep_ratio
self
.
interp
=
interp
def
__call__
(
self
,
im
,
im_info
):
assert
len
(
self
.
target_size
)
==
2
assert
self
.
target_size
[
0
]
>
0
and
self
.
target_size
[
1
]
>
0
im_channel
=
im
.
shape
[
2
]
im_scale_y
,
im_scale_x
=
self
.
generate_scale
(
im
)
im
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
self
.
interp
)
im_info
[
'im_shape'
]
=
np
.
array
(
im
.
shape
[:
2
]).
astype
(
'float32'
)
im_info
[
'scale_factor'
]
=
np
.
array
(
[
im_scale_y
,
im_scale_x
]).
astype
(
'float32'
)
return
im
,
im_info
def
generate_scale
(
self
,
im
):
origin_shape
=
im
.
shape
[:
2
]
im_c
=
im
.
shape
[
2
]
if
self
.
keep_ratio
:
im_size_min
=
np
.
min
(
origin_shape
)
im_size_max
=
np
.
max
(
origin_shape
)
target_size_min
=
np
.
min
(
self
.
target_size
)
target_size_max
=
np
.
max
(
self
.
target_size
)
im_scale
=
float
(
target_size_min
)
/
float
(
im_size_min
)
if
np
.
round
(
im_scale
*
im_size_max
)
>
target_size_max
:
im_scale
=
float
(
target_size_max
)
/
float
(
im_size_max
)
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
self
.
target_size
im_scale_y
=
resize_h
/
float
(
origin_shape
[
0
])
im_scale_x
=
resize_w
/
float
(
origin_shape
[
1
])
return
im_scale_y
,
im_scale_x
class
Permute
(
object
):
def
__init__
(
self
,
):
super
(
Permute
,
self
).
__init__
()
def
__call__
(
self
,
im
,
im_info
):
im
=
im
.
transpose
((
2
,
0
,
1
))
return
im
,
im_info
class
NormalizeImage
(
object
):
def
__init__
(
self
,
mean
,
std
,
is_scale
=
True
,
norm_type
=
'mean_std'
):
self
.
mean
=
mean
self
.
std
=
std
self
.
is_scale
=
is_scale
self
.
norm_type
=
norm_type
def
__call__
(
self
,
im
,
im_info
):
im
=
im
.
astype
(
np
.
float32
,
copy
=
False
)
if
self
.
is_scale
:
scale
=
1.0
/
255.0
im
*=
scale
if
self
.
norm_type
==
'mean_std'
:
mean
=
np
.
array
(
self
.
mean
)[
np
.
newaxis
,
np
.
newaxis
,
:]
std
=
np
.
array
(
self
.
std
)[
np
.
newaxis
,
np
.
newaxis
,
:]
im
-=
mean
im
/=
std
return
im
,
im_info
class
PadStride
(
object
):
def
__init__
(
self
,
stride
=
0
):
self
.
coarsest_stride
=
stride
def
__call__
(
self
,
im
,
im_info
):
coarsest_stride
=
self
.
coarsest_stride
if
coarsest_stride
<=
0
:
return
im
,
im_info
im_c
,
im_h
,
im_w
=
im
.
shape
pad_h
=
int
(
np
.
ceil
(
float
(
im_h
)
/
coarsest_stride
)
*
coarsest_stride
)
pad_w
=
int
(
np
.
ceil
(
float
(
im_w
)
/
coarsest_stride
)
*
coarsest_stride
)
padding_im
=
np
.
zeros
((
im_c
,
pad_h
,
pad_w
),
dtype
=
np
.
float32
)
padding_im
[:,
:
im_h
,
:
im_w
]
=
im
return
padding_im
,
im_info
class
Compose
:
def
__init__
(
self
,
transforms
):
self
.
transforms
=
[]
for
op_info
in
transforms
:
new_op_info
=
op_info
.
copy
()
op_type
=
new_op_info
.
pop
(
'type'
)
self
.
transforms
.
append
(
eval
(
op_type
)(
**
new_op_info
))
def
__call__
(
self
,
img_path
):
img
,
im_info
=
decode_image
(
img_path
)
for
t
in
self
.
transforms
:
img
,
im_info
=
t
(
img
,
im_info
)
inputs
=
copy
.
deepcopy
(
im_info
)
inputs
[
'image'
]
=
img
return
inputs
# postprocess
def
rbox_iou
(
g
,
p
):
g
=
np
.
array
(
g
)
p
=
np
.
array
(
p
)
g
=
Polygon
(
g
[:
8
].
reshape
((
4
,
2
)))
p
=
Polygon
(
p
[:
8
].
reshape
((
4
,
2
)))
g
=
g
.
buffer
(
0
)
p
=
p
.
buffer
(
0
)
if
not
g
.
is_valid
or
not
p
.
is_valid
:
return
0
inter
=
Polygon
(
g
).
intersection
(
Polygon
(
p
)).
area
union
=
g
.
area
+
p
.
area
-
inter
if
union
==
0
:
return
0
else
:
return
inter
/
union
def
multiclass_nms_rotated
(
pred_bboxes
,
pred_scores
,
iou_threshlod
=
0.1
,
score_threshold
=
0.1
):
"""
Args:
pred_bboxes (numpy.ndarray): [B, N, 8]
pred_scores (numpy.ndarray): [B, C, N]
Return:
bboxes (numpy.ndarray): [N, 10]
bbox_num (numpy.ndarray): [B]
"""
bbox_num
=
[]
bboxes
=
[]
for
bbox_per_img
,
score_per_img
in
zip
(
pred_bboxes
,
pred_scores
):
num_per_img
=
0
for
cls_id
,
score_per_cls
in
enumerate
(
score_per_img
):
keep_mask
=
score_per_cls
>
score_threshold
bbox
=
bbox_per_img
[
keep_mask
]
score
=
score_per_cls
[
keep_mask
]
idx
=
score
.
argsort
()[::
-
1
]
bbox
=
bbox
[
idx
]
score
=
score
[
idx
]
keep_idx
=
[]
for
i
,
b
in
enumerate
(
bbox
):
supressed
=
False
for
gi
in
keep_idx
:
g
=
bbox
[
gi
]
if
rbox_iou
(
b
,
g
)
>
iou_threshlod
:
supressed
=
True
break
if
supressed
:
continue
keep_idx
.
append
(
i
)
keep_box
=
bbox
[
keep_idx
]
keep_score
=
score
[
keep_idx
]
keep_cls_ids
=
np
.
ones
(
len
(
keep_idx
))
*
cls_id
bboxes
.
append
(
np
.
concatenate
(
[
keep_cls_ids
[:,
None
],
keep_score
[:,
None
],
keep_box
],
axis
=-
1
))
num_per_img
+=
len
(
keep_idx
)
bbox_num
.
append
(
num_per_img
)
return
np
.
concatenate
(
bboxes
,
axis
=
0
),
np
.
array
(
bbox_num
)
def
get_test_images
(
infer_dir
,
infer_img
):
"""
Get image path list in TEST mode
"""
assert
infer_img
is
not
None
or
infer_dir
is
not
None
,
\
"--image_file or --image_dir should be set"
assert
infer_img
is
None
or
os
.
path
.
isfile
(
infer_img
),
\
"{} is not a file"
.
format
(
infer_img
)
assert
infer_dir
is
None
or
os
.
path
.
isdir
(
infer_dir
),
\
"{} is not a directory"
.
format
(
infer_dir
)
# infer_img has a higher priority
if
infer_img
and
os
.
path
.
isfile
(
infer_img
):
return
[
infer_img
]
images
=
set
()
infer_dir
=
os
.
path
.
abspath
(
infer_dir
)
assert
os
.
path
.
isdir
(
infer_dir
),
\
"infer_dir {} is not a directory"
.
format
(
infer_dir
)
exts
=
[
'jpg'
,
'jpeg'
,
'png'
,
'bmp'
]
exts
+=
[
ext
.
upper
()
for
ext
in
exts
]
for
ext
in
exts
:
images
.
update
(
glob
.
glob
(
'{}/*.{}'
.
format
(
infer_dir
,
ext
)))
images
=
list
(
images
)
assert
len
(
images
)
>
0
,
"no image found in {}"
.
format
(
infer_dir
)
print
(
"Found {} inference images in total."
.
format
(
len
(
images
)))
return
images
def
predict_image
(
infer_config
,
predictor
,
img_list
):
# load preprocess transforms
transforms
=
Compose
(
infer_config
[
'Preprocess'
])
# predict image
for
img_path
in
img_list
:
inputs
=
transforms
(
img_path
)
inputs_name
=
[
var
.
name
for
var
in
predictor
.
get_inputs
()]
inputs
=
{
k
:
inputs
[
k
][
None
,
]
for
k
in
inputs_name
}
outputs
=
predictor
.
run
(
output_names
=
None
,
input_feed
=
inputs
)
bboxes
,
bbox_num
=
multiclass_nms_rotated
(
np
.
array
(
outputs
[
0
]),
np
.
array
(
outputs
[
1
]))
print
(
"ONNXRuntime predict: "
)
for
bbox
in
bboxes
:
if
bbox
[
0
]
>
-
1
and
bbox
[
1
]
>
infer_config
[
'draw_threshold'
]:
print
(
f
"
{
int
(
bbox
[
0
])
}
{
bbox
[
1
]
}
"
f
"
{
bbox
[
2
]
}
{
bbox
[
3
]
}
{
bbox
[
4
]
}
{
bbox
[
5
]
}
"
f
"
{
bbox
[
6
]
}
{
bbox
[
7
]
}
{
bbox
[
8
]
}
{
bbox
[
9
]
}
"
)
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--infer_cfg"
,
type
=
str
,
help
=
"infer_cfg.yml"
)
parser
.
add_argument
(
'--onnx_file'
,
type
=
str
,
default
=
"model.onnx"
,
help
=
"onnx model file path"
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
)
parser
.
add_argument
(
"--image_file"
,
type
=
str
)
return
parser
.
parse_args
()
if
__name__
==
'__main__'
:
FLAGS
=
parse_args
()
# load image list
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
# load predictor
predictor
=
InferenceSession
(
FLAGS
.
onnx_file
)
# load infer config
with
open
(
FLAGS
.
infer_cfg
)
as
f
:
infer_config
=
yaml
.
safe_load
(
f
)
predict_image
(
infer_config
,
predictor
,
img_list
)
ppdet/modeling/heads/ppyoloe_r_head.py
浏览文件 @
41ca7cad
...
...
@@ -44,7 +44,7 @@ class ESEAttn(nn.Layer):
@
register
class
PPYOLOERHead
(
nn
.
Layer
):
__shared__
=
[
'num_classes'
,
'trt'
]
__shared__
=
[
'num_classes'
,
'trt'
,
'export_onnx'
]
__inject__
=
[
'static_assigner'
,
'assigner'
,
'nms'
]
def
__init__
(
self
,
...
...
@@ -57,6 +57,7 @@ class PPYOLOERHead(nn.Layer):
use_varifocal_loss
=
True
,
static_assigner_epoch
=
4
,
trt
=
False
,
export_onnx
=
False
,
static_assigner
=
'ATSSAssigner'
,
assigner
=
'TaskAlignedAssigner'
,
nms
=
'MultiClassNMS'
,
...
...
@@ -84,6 +85,8 @@ class PPYOLOERHead(nn.Layer):
self
.
stem_cls
=
nn
.
LayerList
()
self
.
stem_reg
=
nn
.
LayerList
()
self
.
stem_angle
=
nn
.
LayerList
()
trt
=
False
if
export_onnx
else
trt
self
.
export_onnx
=
export_onnx
act
=
get_act_fn
(
act
,
trt
=
trt
)
if
act
is
None
or
isinstance
(
act
,
(
str
,
dict
))
else
act
...
...
@@ -415,5 +418,7 @@ class PPYOLOERHead(nn.Layer):
],
axis
=-
1
).
reshape
([
-
1
,
1
,
8
])
pred_bboxes
/=
scale_factor
if
self
.
export_onnx
:
return
pred_bboxes
,
pred_scores
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
pred_bboxes
,
pred_scores
)
return
bbox_pred
,
bbox_num
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录