Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
411e2348
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
411e2348
编写于
1月 06, 2017
作者:
C
chengxingyi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
A traffic demo for ASC17
上级
5c0178b0
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
268 addition
and
0 deletion
+268
-0
demo/traffic_prediction/README
demo/traffic_prediction/README
+7
-0
demo/traffic_prediction/data/get_data.sh
demo/traffic_prediction/data/get_data.sh
+34
-0
demo/traffic_prediction/dataprovider.py
demo/traffic_prediction/dataprovider.py
+77
-0
demo/traffic_prediction/gen_result.py
demo/traffic_prediction/gen_result.py
+47
-0
demo/traffic_prediction/predict.sh
demo/traffic_prediction/predict.sh
+30
-0
demo/traffic_prediction/train.sh
demo/traffic_prediction/train.sh
+30
-0
demo/traffic_prediction/trainer_config.py
demo/traffic_prediction/trainer_config.py
+43
-0
未找到文件。
demo/traffic_prediction/README
0 → 100644
浏览文件 @
411e2348
run by:
cd ./data
sh get_data.sh
cd ..
sh train.sh
sh predict.sh
demo/traffic_prediction/data/get_data.sh
0 → 100755
浏览文件 @
411e2348
#!/bin/bash
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
set
-x
DIR
=
"
$(
cd
"
$(
dirname
"
$0
"
)
"
;
pwd
-P
)
"
cd
$DIR
#download the dataset
echo
"Downloading traffic data..."
wget http://paddlepaddle.bj.bcebos.com/demo/traffic/traffic_data.tar.gz
#extract package
echo
"Unzipping..."
tar
-zxvf
traffic_data.tar.gz
echo
"data/speeds.csv"
>>
train.list
echo
"data/speeds.csv"
>>
test.list
echo
"data/speeds.csv"
>>
pred.list
echo
"Done."
demo/traffic_prediction/dataprovider.py
0 → 100644
浏览文件 @
411e2348
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer.PyDataProvider2
import
*
import
sys
import
numpy
as
np
TERM_NUM
=
24
FORECASTING_NUM
=
25
LABEL_VALUE_NUM
=
4
def
initHook
(
settings
,
file_list
,
**
kwargs
):
"""
Init hook is invoked before process data. It will set obj.slots and store data meta.
:param settings: global object. It will passed to process routine.
:type obj: object
:param file_list: the meta file object, which passed from trainer_config.py,but unused in this function.
:param kwargs: unused other arguments.
"""
del
kwargs
#unused
settings
.
pool_size
=
sys
.
maxint
#Use a time seires of the past as feature.
#Dense_vector's expression form is [float,float,...,float]
settings
.
slots
=
[
dense_vector
(
TERM_NUM
)]
#There are next FORECASTING_NUM fragments you need predict.
#Every predicted condition at time point has four states.
for
i
in
range
(
FORECASTING_NUM
):
settings
.
slots
.
append
(
integer_value
(
LABEL_VALUE_NUM
))
@
provider
(
init_hook
=
initHook
,
cache
=
CacheType
.
CACHE_PASS_IN_MEM
,
should_shuffle
=
True
)
def
process
(
settings
,
file_name
):
with
open
(
file_name
)
as
f
:
#abandon fields name
f
.
next
()
for
row_num
,
line
in
enumerate
(
f
):
speeds
=
map
(
int
,
line
.
rstrip
(
'
\r\n
'
).
split
(
","
)[
1
:])
# Get the max index.
end_time
=
len
(
speeds
)
# Scanning and generating samples
for
i
in
range
(
TERM_NUM
,
end_time
-
FORECASTING_NUM
):
# For dense slot
pre_spd
=
map
(
float
,
speeds
[
i
-
TERM_NUM
:
i
])
# Integer value need predicting, values start from 0, so every one minus 1.
fol_spd
=
[
i
-
1
for
i
in
speeds
[
i
:
i
+
FORECASTING_NUM
]]
# Predicting label is missing, abandon the sample.
if
-
1
in
fol_spd
:
continue
yield
[
pre_spd
]
+
fol_spd
def
predict_initHook
(
settings
,
file_list
,
**
kwargs
):
settings
.
pool_size
=
sys
.
maxint
settings
.
slots
=
[
dense_vector
(
TERM_NUM
)]
@
provider
(
init_hook
=
predict_initHook
,
should_shuffle
=
False
)
def
process_predict
(
settings
,
file_name
):
with
open
(
file_name
)
as
f
:
#abandon fields name
f
.
next
()
for
row_num
,
line
in
enumerate
(
f
):
speeds
=
map
(
int
,
line
.
rstrip
(
'
\r\n
'
).
split
(
","
))
end_time
=
len
(
speeds
)
pre_spd
=
map
(
float
,
speeds
[
end_time
-
TERM_NUM
:
end_time
])
yield
pre_spd
demo/traffic_prediction/gen_result.py
0 → 100644
浏览文件 @
411e2348
res
=
[]
with
open
(
'./rank-00000'
)
as
f
:
for
line
in
f
:
pred
=
map
(
int
,
line
.
strip
(
'
\r\n
;'
).
split
(
";"
))
#raw prediction range from 0 to 3
res
.
append
([
i
+
1
for
i
in
pred
])
file_name
=
open
(
'./data/pred.list'
).
read
().
strip
(
'
\r\n
'
)
FORECASTING_NUM
=
24
header
=
[
'id'
,
'201604200805'
,
'201604200810'
,
'201604200815'
,
'201604200820'
,
'201604200825'
,
'201604200830'
,
'201604200835'
,
'201604200840'
,
'201604200845'
,
'201604200850'
,
'201604200855'
,
'201604200900'
,
'201604200905'
,
'201604200910'
,
'201604200915'
,
'201604200920'
,
'201604200925'
,
'201604200930'
,
'201604200935'
,
'201604200940'
,
'201604200945'
,
'201604200950'
,
'201604200955'
,
'201604201000'
,
]
###################
## To CSV format ##
###################
with
open
(
file_name
)
as
f
:
f
.
next
()
print
','
.
join
(
header
)
for
row_num
,
line
in
enumerate
(
f
):
fields
=
line
.
rstrip
(
'
\r\n
'
).
split
(
','
)
linkid
=
fields
[
0
]
print
linkid
+
','
+
','
.
join
(
map
(
str
,
res
[
row_num
]))
demo/traffic_prediction/predict.sh
0 → 100755
浏览文件 @
411e2348
#!/bin/bash
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
cfg
=
trainer_config.py
# pass choice
model
=
"output/pass-00000"
paddle train
\
--config
=
$cfg
\
--use_gpu
=
false
\
--job
=
test
\
--init_model_path
=
$model
\
--config_args
=
is_predict
=
1
\
--predict_output_dir
=
.
python gen_result.py
>
result.txt
rm
-rf
rank-00000
demo/traffic_prediction/train.sh
0 → 100755
浏览文件 @
411e2348
#!/bin/bash
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
cfg
=
trainer_config.py
#TRAINER_BIN="./paddle_trainer"
paddle train
\
--config
=
$cfg
\
--save_dir
=
./output
\
--trainer_count
=
4
\
--log_period
=
1000
\
--dot_period
=
10
\
--num_passes
=
10
\
--use_gpu
=
false
\
--show_parameter_stats_period
=
3000
\
--test_wait
=
1
#--test_all_data_in_one_period=1 \
2>&1 |
tee
'train.log'
demo/traffic_prediction/trainer_config.py
0 → 100755
浏览文件 @
411e2348
#!/usr/bin/env/python
#-*python-*-
from
paddle.trainer_config_helpers
import
*
################################### DATA Configuration #############################################
is_predict
=
get_config_arg
(
'is_predict'
,
bool
,
False
)
trn
=
'./data/train.list'
if
not
is_predict
else
None
tst
=
'./data/test.list'
if
not
is_predict
else
'./data/pred.list'
process
=
'process'
if
not
is_predict
else
'process_predict'
define_py_data_sources2
(
train_list
=
trn
,
test_list
=
tst
,
module
=
"dataprovider"
,
obj
=
process
)
################################### Parameter Configuaration #######################################
TERM_NUM
=
24
FORECASTING_NUM
=
25
emb_size
=
16
batch_size
=
128
if
not
is_predict
else
1
settings
(
batch_size
=
batch_size
,
learning_rate
=
1e-3
,
learning_method
=
RMSPropOptimizer
()
)
################################### Algorithm Configuration ########################################
output_label
=
[]
link_encode
=
data_layer
(
name
=
'link_encode'
,
size
=
TERM_NUM
)
for
i
in
xrange
(
FORECASTING_NUM
):
# Each task share same weight.
link_param
=
ParamAttr
(
name
=
'_link_vec.w'
,
initial_max
=
1.0
,
initial_min
=-
1.0
)
link_vec
=
fc_layer
(
input
=
link_encode
,
size
=
emb_size
,
param_attr
=
link_param
)
score
=
fc_layer
(
input
=
link_vec
,
size
=
4
,
act
=
SoftmaxActivation
())
if
is_predict
:
maxid
=
maxid_layer
(
score
)
output_label
.
append
(
maxid
)
else
:
# Multi-task training.
label
=
data_layer
(
name
=
'label_%dmin'
%
((
i
+
1
)
*
5
),
size
=
4
)
cls
=
classification_cost
(
input
=
score
,
name
=
"cost_%dmin"
%
((
i
+
1
)
*
5
),
label
=
label
)
output_label
.
append
(
cls
)
outputs
(
output_label
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录