Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
40405d13
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
40405d13
编写于
3月 02, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add doc and API.spec. test=develop
上级
e90e0bdf
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
61 addition
and
0 deletion
+61
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+18
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+33
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+9
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
40405d13
...
@@ -220,6 +220,7 @@ paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func',
...
@@ -220,6 +220,7 @@ paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func',
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1546136806fef5c08f6918544bd9151d'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1546136806fef5c08f6918544bd9151d'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', '2f6ff96864054a31aa4bb659c6722c99'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', '2f6ff96864054a31aa4bb659c6722c99'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '431a4301c35032166ec029f7432c80a7'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '431a4301c35032166ec029f7432c80a7'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '26e3842d408b0af4653433ce1591a473449a78f6'))
paddle.fluid.layers.tree_conv (ArgSpec(args=['nodes_vector', 'edge_set', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None)), ('document', '34ea12ac9f10a65dccbc50100d12e607'))
paddle.fluid.layers.tree_conv (ArgSpec(args=['nodes_vector', 'edge_set', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None)), ('document', '34ea12ac9f10a65dccbc50100d12e607'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '33bbd42027d872b3818b3d64ec52e139'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '33bbd42027d872b3818b3d64ec52e139'))
paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'b1ae2e1cc0750e58726374061ea90ecc'))
paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'b1ae2e1cc0750e58726374061ea90ecc'))
...
...
paddle/fluid/operators/kldiv_loss_op.cc
浏览文件 @
40405d13
...
@@ -88,6 +88,24 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -88,6 +88,24 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator calculates the Kullback-Leibler divergence loss
This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target).
between Input(X) and Input(Target).
KL divergence loss calculates as follows:
$$l(x, y) = y * (\log y - x)$$
While :attr:`reduction` is :attr:`none`, output loss is in
same shape with Input(X), loss in each point is calculated
seperately and no reduction applied.
While :attr:`reduction` is :attr:`mean`, output loss in in
shape of [1] and loss value is the mean value of all losses.
While :attr:`reduction` is :attr:`sum`, output loss in in
shape of [1] and loss value is the sum value of all losses.
While :attr:`reduction` is :attr:`batchmean`, output loss in
in shape of [1] and loss value is the sum value of all losses
divided by batch size.
)DOC"
);
)DOC"
);
}
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
40405d13
...
@@ -186,6 +186,7 @@ __all__ = [
...
@@ -186,6 +186,7 @@ __all__ = [
'psroi_pool'
,
'psroi_pool'
,
'teacher_student_sigmoid_loss'
,
'teacher_student_sigmoid_loss'
,
'huber_loss'
,
'huber_loss'
,
'kldiv_loss'
,
'tree_conv'
,
'tree_conv'
,
]
]
...
@@ -10588,6 +10589,38 @@ def huber_loss(input, label, delta):
...
@@ -10588,6 +10589,38 @@ def huber_loss(input, label, delta):
return
out
return
out
@
templatedoc
()
def
kldiv_loss
(
x
,
target
,
reduction
=
'mean'
,
name
=
None
):
"""
${comment}
Args:
x (Variable): ${x_comment}
target (Variable): ${target_comment}
reduction (Variable): ${reduction_comment}
name (str, default None): The name of this layer.
Returns:
kldiv\_loss (Variable): The KL divergence loss.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
"""
helper
=
LayerHelper
(
'kldiv_loss'
,
**
locals
())
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'kldiv_loss'
,
inputs
=
{
'X'
:
x
,
'Target'
:
target
},
outputs
=
{
'Loss'
:
loss
},
attrs
=
{
'reduction'
:
reduction
})
return
loss
@
templatedoc
()
@
templatedoc
()
def
tree_conv
(
nodes_vector
,
def
tree_conv
(
nodes_vector
,
edge_set
,
edge_set
,
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
40405d13
...
@@ -1046,6 +1046,15 @@ class TestBook(unittest.TestCase):
...
@@ -1046,6 +1046,15 @@ class TestBook(unittest.TestCase):
out
=
layers
.
spectral_norm
(
weight
,
dim
=
1
,
power_iters
=
1
)
out
=
layers
.
spectral_norm
(
weight
,
dim
=
1
,
power_iters
=
1
)
self
.
assertIsNotNone
(
out
)
self
.
assertIsNotNone
(
out
)
def
test_kldiv_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
32
,
128
,
128
],
dtype
=
"float32"
)
target
=
layers
.
data
(
name
=
'target'
,
shape
=
[
32
,
128
,
128
],
dtype
=
"float32"
)
loss
=
layers
.
kldiv_loss
(
x
=
x
,
target
=
target
,
reduction
=
'batchmean'
)
self
.
assertIsNotNone
(
loss
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_shuffle_channel
(
self
):
def
test_shuffle_channel
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录