Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3f8d9b0a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3f8d9b0a
编写于
6月 20, 2018
作者:
C
chengduo
提交者:
GitHub
6月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11580 from chengduoZH/fix_doc_data_reader
Refine doc of data reader
上级
4b7ae145
10cee7ed
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
104 addition
and
3 deletion
+104
-3
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+97
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+7
-3
未找到文件。
python/paddle/fluid/data_feeder.py
浏览文件 @
3f8d9b0a
...
...
@@ -79,6 +79,61 @@ class DataToLoDTensorConverter(object):
class
DataFeeder
(
object
):
"""
DataFeeder converts the data that returned by a reader into a data
structure that can feed into Executor and ParallelExecutor. The reader
usually returns a list of mini-batch data entries. Each data entry in
the list is one sample. Each sample is a list or a tuple with one
feature or multiple features.
The simple usage shows below:
.. code-block:: python
place = fluid.CPUPlace()
img = fluid.layers.data(name='image', shape=[1, 28, 28])
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
If you want to feed data into GPU side separately in advance when you
use multi-GPU to train a model, you can use `decorate_reader` function.
.. code-block:: python
place=fluid.CUDAPlace(0)
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
reader = feeder.decorate_reader(
paddle.batch(flowers.train(), batch_size=16))
Args:
feed_list(list): The Variables or Variables'name that will
feed into model.
place(Place): place indicates feed data into CPU or GPU, if you want to
feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
the GPU id), or if you want to feed data into CPU, please using
`fluid.CPUPlace()`.
program(Program): The Program that will feed data into, if program
is None, it will use default_main_program(). Default None.
Raises:
ValueError: If some Variable is not in this Program.
Examples:
.. code-block:: python
# ...
place = fluid.CPUPlace()
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_vars_name
] # feed_vars_name is a list of variables' name.
feeder = fluid.DataFeeder(feed_list, place)
for data in reader():
outs = exe.run(program=main_program,
feed=feeder.feed(data))
"""
def
__init__
(
self
,
feed_list
,
place
,
program
=
None
):
self
.
feed_dtypes
=
[]
self
.
feed_names
=
[]
...
...
@@ -108,6 +163,16 @@ class DataFeeder(object):
self
.
place
=
place
def
feed
(
self
,
iterable
):
"""
According to feed_list and iterable, converters the input into
a data structure that can feed into Executor and ParallelExecutor.
Args:
iterable(list|tuple): the input data.
Returns:
dict: the result of conversion.
"""
converter
=
[]
for
lod_level
,
shape
,
dtype
in
six
.
zip
(
self
.
feed_lod_level
,
self
.
feed_shapes
,
self
.
feed_dtypes
):
...
...
@@ -130,6 +195,20 @@ class DataFeeder(object):
return
ret_dict
def
feed_parallel
(
self
,
iterable
,
num_places
=
None
):
"""
Takes multiple mini-batches. Each mini-batch will be feed on each
device in advance.
Args:
iterable(list|tuple): the input data.
num_places(int): the number of devices. Default None.
Returns:
dict: the result of conversion.
Notes:
The number of devices and number of mini-batches must be same.
"""
if
isinstance
(
self
.
place
,
core
.
CUDAPlace
):
places
=
[
core
.
CUDAPlace
(
i
)
...
...
@@ -168,6 +247,24 @@ class DataFeeder(object):
multi_devices
,
num_places
=
None
,
drop_last
=
True
):
"""
Converter the input data into a data that returned by reader into
multiple mini-batches. Each mini-batch will be feed on each device.
Args:
reader(fun): the input data.
multi_devices(bool): the number of places. Default None.
num_places(int): the number of places. Default None.
drop_last(bool): the number of places. Default None.
Returns:
dict: the result of conversion.
Raises:
ValueError: If drop_last is False and the data batch which cannot
fit for devices.
"""
def
__reader_creator__
():
if
not
multi_devices
:
for
item
in
reader
():
...
...
python/paddle/fluid/executor.py
浏览文件 @
3f8d9b0a
...
...
@@ -135,14 +135,18 @@ def has_fetch_operators(block, fetch_targets, fetch_holder_name):
def
fetch_var
(
name
,
scope
=
None
,
return_numpy
=
True
):
"""
Fetch the value of the variable with the given name from the given scope
Fetch the value of the variable with the given name from the
given scope.
Args:
name(str): name of the variable. Typically, only persistable variables
can be found in the scope used for running the program.
scope(core.Scope|None): scope object. It should be the scope where
you pass to Executor.run() when running your program.
If None, global_scope() will be used.
return_numpy(bool): whether convert the tensor to numpy.ndarray
If None, global_scope() will be used. Default None.
return_numpy(bool): whether convert the tensor to numpy.ndarray.
Default True.
Returns:
LodTensor|numpy.ndarray
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录