提交 3f2aa919 编写于 作者: Q qiaolongfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into timeline-support-pure-cpu

......@@ -73,6 +73,7 @@ option(PY_VERSION "Compile PaddlePaddle with python3 support" ${PY_VER
if(NOT PY_VERSION)
set(PY_VERSION 2.7)
endif()
set(PYBIND11_PYTHON_VERSION ${PY_VERSION})
# CMAKE_BUILD_TYPE
if(NOT CMAKE_BUILD_TYPE)
......
......@@ -280,12 +280,16 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
std::string data_format = ctx.Attr<std::string>("data_format");
auto chosen_memory_format =
platform::data_format_to_memory_format(data_format);
auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto weights_md = platform::MKLDNNMemDesc(
weights_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto dst_md = platform::MKLDNNMemDesc(
dst_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
// create a conv primitive descriptor and save it for usage in backward
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
......@@ -423,16 +427,20 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
* ('any') which lets a primitive (conv backward in this case) choose
* the memory format preferred for best performance
*/
std::string data_format = ctx.Attr<std::string>("data_format");
auto chosen_memory_format =
platform::data_format_to_memory_format(data_format);
auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto diff_src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto weights_md = platform::MKLDNNMemDesc(
weights_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto diff_weights_md = platform::MKLDNNMemDesc(
weights_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
auto diff_dst_md = platform::MKLDNNMemDesc(
dst_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
// Retrieve conv_pd from device context
auto conv_pd =
......
......@@ -223,7 +223,7 @@ class MKLDNNHandler {
static std::string GetHash(mkldnn::memory::dims& operand_dims, // NOLINT
const std::string& suffix) {
return dims2str(operand_dims) + suffix;
};
}
protected:
static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
......@@ -251,5 +251,17 @@ inline mkldnn::memory::format MKLDNNFormatForSize(
return data_format;
}
inline mkldnn::memory::format data_format_to_memory_format(
const std::string& data_format) {
switch (framework::StringToDataLayout(data_format)) {
case framework::DataLayout::kNHWC:
return mkldnn::memory::format::nhwc;
case framework::DataLayout::kNCHW:
return mkldnn::memory::format::nchw;
default:
return mkldnn::memory::format::any;
}
}
} // namespace platform
} // namespace paddle
......@@ -394,8 +394,10 @@ All parameter, weight, gradient are variables in Paddle.
InferenceOptimize(*(origin.Proto()), &pruned_desc);
return new ProgramDesc(pruned_desc);
});
m.def("empty_var_name", []() { return framework::kEmptyVarName; });
m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
m.def("empty_var_name",
[]() { return std::string(framework::kEmptyVarName); });
m.def("grad_var_suffix",
[]() { return std::string(framework::kGradVarSuffix); });
m.def_submodule(
"var_names",
"The module will return special predefined variable name in Paddle")
......
......@@ -28,11 +28,12 @@ images per class.
"""
import cPickle
import itertools
import numpy
import paddle.dataset.common
import tarfile
from six.moves import zip
from six.moves import cPickle as pickle
__all__ = ['train100', 'test100', 'train10', 'test10', 'convert']
......@@ -48,7 +49,7 @@ def reader_creator(filename, sub_name, cycle=False):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
for sample, label in zip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader():
......@@ -58,7 +59,7 @@ def reader_creator(filename, sub_name, cycle=False):
while True:
for name in names:
batch = cPickle.load(f.extractfile(name))
batch = pickle.load(f.extractfile(name))
for item in read_batch(batch):
yield item
if not cycle:
......
......@@ -20,9 +20,8 @@ import shutil
import sys
import importlib
import paddle.dataset
import cPickle
import six.moves.cPickle as pickle
import glob
import cPickle as pickle
__all__ = [
'DATA_HOME',
......@@ -75,13 +74,13 @@ def download(url, module_name, md5sum, save_name=None):
retry_limit = 3
while not (os.path.exists(filename) and md5file(filename) == md5sum):
if os.path.exists(filename):
print "file md5", md5file(filename), md5sum
print("file md5", md5file(filename), md5sum)
if retry < retry_limit:
retry += 1
else:
raise RuntimeError("Cannot download {0} within retry limit {1}".
format(url, retry_limit))
print "Cache file %s not found, downloading %s" % (filename, url)
print("Cache file %s not found, downloading %s" % (filename, url))
r = requests.get(url, stream=True)
total_length = r.headers.get('content-length')
......@@ -104,8 +103,9 @@ def download(url, module_name, md5sum, save_name=None):
def fetch_all():
for module_name in filter(lambda x: not x.startswith("__"),
dir(paddle.dataset)):
for module_name in [
x for x in dir(paddle.dataset) if not x.startswith("__")
]:
if "fetch" in dir(
importlib.import_module("paddle.dataset.%s" % module_name)):
getattr(
......@@ -114,8 +114,9 @@ def fetch_all():
def fetch_all_recordio(path):
for module_name in filter(lambda x: not x.startswith("__"),
dir(paddle.dataset)):
for module_name in [
x for x in dir(paddle.dataset) if not x.startswith("__")
]:
if "convert" in dir(
importlib.import_module("paddle.dataset.%s" % module_name)) and \
not module_name == "common":
......@@ -126,7 +127,7 @@ def fetch_all_recordio(path):
"convert")(ds_path)
def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump):
def split(reader, line_count, suffix="%05d.pickle", dumper=pickle.dump):
"""
you can call the function as:
......@@ -167,7 +168,7 @@ def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump):
def cluster_files_reader(files_pattern,
trainer_count,
trainer_id,
loader=cPickle.load):
loader=pickle.load):
"""
Create a reader that yield element from the given files, select
a file set according trainer count and trainer_id
......@@ -188,7 +189,7 @@ def cluster_files_reader(files_pattern,
my_file_list = []
for idx, fn in enumerate(file_list):
if idx % trainer_count == trainer_id:
print "append file: %s" % fn
print("append file: %s" % fn)
my_file_list.append(fn)
for fn in my_file_list:
with open(fn, "r") as f:
......@@ -221,7 +222,7 @@ def convert(output_path, reader, line_count, name_prefix):
for l in lines:
# FIXME(Yancey1989):
# dumps with protocol: pickle.HIGHEST_PROTOCOL
writer.write(cPickle.dumps(l))
writer.write(pickle.dumps(l))
writer.close()
lines = []
......
......@@ -24,6 +24,7 @@ import tarfile
import gzip
import itertools
import paddle.dataset.common
from six.moves import zip
__all__ = ['test, get_dict', 'get_embedding', 'convert']
......@@ -87,12 +88,12 @@ def corpus_reader(data_path, words_name, props_name):
sentences = []
labels = []
one_seg = []
for word, label in itertools.izip(words_file, props_file):
for word, label in zip(words_file, props_file):
word = word.strip()
label = label.strip().split()
if len(label) == 0: # end of sentence
for i in xrange(len(one_seg[0])):
for i in range(len(one_seg[0])):
a_kind_lable = [x[i] for x in one_seg]
labels.append(a_kind_lable)
......
......@@ -28,10 +28,9 @@ Graphics and Image Processing (2008)
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
"""
import cPickle
import itertools
import functools
from common import download
from .common import download
import tarfile
import scipy.io as scio
from paddle.dataset.image import *
......@@ -39,6 +38,8 @@ from paddle.reader import *
import os
import numpy as np
from multiprocessing import cpu_count
from six.moves import cPickle as pickle
from six.moves import zip
__all__ = ['train', 'test', 'valid']
DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
......@@ -116,10 +117,10 @@ def reader_creator(data_file,
file = file.strip()
batch = None
with open(file, 'r') as f:
batch = cPickle.load(f)
batch = pickle.load(f)
data = batch['data']
labels = batch['label']
for sample, label in itertools.izip(data, batch['label']):
for sample, label in zip(data, batch['label']):
yield sample, int(label) - 1
if not cycle:
break
......
......@@ -36,7 +36,7 @@ except ImportError:
cv2 = None
import os
import tarfile
import cPickle
import six.moves.cPickle as pickle
__all__ = [
"load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
......@@ -86,10 +86,10 @@ def batch_images_from_tar(data_file,
output = {}
output['label'] = labels
output['data'] = data
cPickle.dump(
pickle.dump(
output,
open('%s/batch_%d' % (out_path, file_id), 'w'),
protocol=cPickle.HIGHEST_PROTOCOL)
protocol=pickle.HIGHEST_PROTOCOL)
file_id += 1
data = []
labels = []
......@@ -97,10 +97,10 @@ def batch_images_from_tar(data_file,
output = {}
output['label'] = labels
output['data'] = data
cPickle.dump(
pickle.dump(
output,
open('%s/batch_%d' % (out_path, file_id), 'w'),
protocol=cPickle.HIGHEST_PROTOCOL)
protocol=pickle.HIGHEST_PROTOCOL)
with open(meta_file, 'a') as meta:
for file in os.listdir(out_path):
......
......@@ -42,13 +42,13 @@ def tokenize(pattern):
# sequential access of member files, other than
# tarfile.extractfile, which does random access and might
# destroy hard disks.
tf = tarf.next()
tf = next(tarf)
while tf != None:
if bool(pattern.match(tf.name)):
# newline and punctuations removal and ad-hoc tokenization.
yield tarf.extractfile(tf).read().rstrip("\n\r").translate(
None, string.punctuation).lower().split()
tf = tarf.next()
tf = next(tarf)
def build_dict(pattern, cutoff):
......@@ -62,11 +62,11 @@ def build_dict(pattern, cutoff):
word_freq[word] += 1
# Not sure if we should prune less-frequent words here.
word_freq = filter(lambda x: x[1] > cutoff, word_freq.items())
word_freq = [x for x in list(word_freq.items()) if x[1] > cutoff]
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary))
word_idx = dict(zip(words, xrange(len(words))))
word_idx = dict(list(zip(words, list(range(len(words))))))
word_idx['<unk>'] = len(words)
return word_idx
......
......@@ -64,11 +64,11 @@ def build_dict(min_word_freq=50):
# remove <unk> for now, since we will set it as last index
del word_freq['<unk>']
word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items())
word_freq = [x for x in list(word_freq.items()) if x[1] > min_word_freq]
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*word_freq_sorted))
word_idx = dict(zip(words, xrange(len(words))))
word_idx = dict(list(zip(words, list(range(len(words))))))
word_idx['<unk>'] = len(words)
return word_idx
......
......@@ -65,7 +65,7 @@ def reader_creator(image_filename, label_filename, buffer_size):
images = images / 255.0 * 2.0 - 1.0
for i in xrange(buffer_size):
for i in range(buffer_size):
yield images[i, :], int(labels[i])
finally:
try:
......
......@@ -16,7 +16,7 @@ Movielens 1-M dataset.
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
Movielens 1-M dataset from
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
......@@ -187,7 +187,7 @@ def max_movie_id():
Get the maximum value of movie id.
"""
__initialize_meta_info__()
return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index
return reduce(__max_index_info__, list(MOVIE_INFO.values())).index
def max_user_id():
......@@ -195,7 +195,7 @@ def max_user_id():
Get the maximum value of user id.
"""
__initialize_meta_info__()
return reduce(__max_index_info__, USER_INFO.viewvalues()).index
return reduce(__max_index_info__, list(USER_INFO.values())).index
def __max_job_id_impl__(a, b):
......@@ -210,7 +210,7 @@ def max_job_id():
Get the maximum value of job id.
"""
__initialize_meta_info__()
return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id
return reduce(__max_job_id_impl__, list(USER_INFO.values())).job_id
def movie_categories():
......@@ -243,7 +243,7 @@ def unittest():
for test_count, _ in enumerate(test()()):
pass
print train_count, test_count
print(train_count, test_count)
def fetch():
......
......@@ -26,7 +26,7 @@ http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ20
import os
import functools
import rarfile
from common import download
from .common import download
import numpy as np
# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
......@@ -53,7 +53,7 @@ class Query(object):
----------
query_id : int
query_id in dataset, mapping from query to relevance documents
relevance_score : int
relevance_score : int
relevance score of query and document pair
feature_vector : array, dense feature
feature in vector format
......@@ -92,7 +92,7 @@ class Query(object):
sys.stdout.write("expect 48 space split parts, get %d" %
(len(parts)))
return None
# format : 0 qid:10 1:0.000272 2:0.000000 ....
# format : 0 qid:10 1:0.000272 2:0.000000 ....
self.relevance_score = int(parts[0])
self.query_id = int(parts[1].split(':')[1])
for p in parts[2:]:
......@@ -295,7 +295,7 @@ def __reader__(filepath, format="pairwise", shuffle=False, fill_missing=-1):
--------
filename : string
fill_missing : fill the missing value. default in MQ2007 is -1
Returns
------
yield
......@@ -330,4 +330,4 @@ if __name__ == "__main__":
mytest = functools.partial(
__reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise")
for label, query in mytest():
print label, query
print(label, query)
......@@ -43,11 +43,11 @@ def download_data_if_not_yet():
nltk.data.path.append(paddle.dataset.common.DATA_HOME)
movie_reviews.categories()
except LookupError:
print "Downloading movie_reviews data set, please wait....."
print("Downloading movie_reviews data set, please wait.....")
nltk.download(
'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
print "Download data set success....."
print "Path is " + nltk.data.find('corpora/movie_reviews').path
print("Download data set success.....")
print("Path is " + nltk.data.find('corpora/movie_reviews').path)
def get_word_dict():
......@@ -64,7 +64,7 @@ def get_word_dict():
for field in movie_reviews.fileids(category):
for words in movie_reviews.words(field):
word_freq_dict[words] += 1
words_sort_list = word_freq_dict.items()
words_sort_list = list(word_freq_dict.items())
words_sort_list.sort(cmp=lambda a, b: b[1] - a[1])
for index, word in enumerate(words_sort_list):
words_freq_sorted.append((word[0], index))
......@@ -80,7 +80,8 @@ def sort_files():
files_list = list()
neg_file_list = movie_reviews.fileids('neg')
pos_file_list = movie_reviews.fileids('pos')
files_list = list(chain.from_iterable(zip(neg_file_list, pos_file_list)))
files_list = list(
chain.from_iterable(list(zip(neg_file_list, pos_file_list))))
return files_list
......
......@@ -36,7 +36,7 @@ class TestCommon(unittest.TestCase):
def test_split(self):
def test_reader():
def reader():
for x in xrange(10):
for x in range(10):
yield x
return reader
......@@ -49,7 +49,7 @@ class TestCommon(unittest.TestCase):
def test_cluster_file_reader(self):
_, temp_path = tempfile.mkstemp()
for x in xrange(5):
for x in range(5):
with open(temp_path + '/%05d.test' % x) as f:
f.write('%d\n' % x)
reader = paddle.dataset.common.cluster_files_reader(
......@@ -63,7 +63,7 @@ class TestCommon(unittest.TestCase):
def test_reader():
def reader():
for x in xrange(record_num):
for x in range(record_num):
yield x
return reader
......
......@@ -59,7 +59,7 @@ class TestMikolov(unittest.TestCase):
self.assertEqual(first_line, read_line)
def test_total(self):
_, idx = zip(*WORD_DICT.items())
_, idx = list(zip(*list(WORD_DICT.items())))
self.assertEqual(sorted(idx)[-1], len(WORD_DICT) - 1)
......
......@@ -24,9 +24,8 @@ from nltk.corpus import movie_reviews
class TestSentimentMethods(unittest.TestCase):
def test_get_word_dict(self):
word_dict = st.get_word_dict()[0:10]
test_word_list = [(u',', 0), (u'the', 1), (u'.', 2), (u'a', 3),
(u'and', 4), (u'of', 5), (u'to', 6), (u"'", 7),
(u'is', 8), (u'in', 9)]
test_word_list = [(',', 0), ('the', 1), ('.', 2), ('a', 3), ('and', 4),
('of', 5), ('to', 6), ("'", 7), ('is', 8), ('in', 9)]
for idx, each in enumerate(word_dict):
self.assertEqual(each, test_word_list[idx])
self.assertTrue("/root/.cache/paddle/dataset" in nltk.data.path)
......
......@@ -49,9 +49,12 @@ def feature_range(maximums, minimums):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
feature_num = len(maximums)
ax.bar(range(feature_num), maximums - minimums, color='r', align='center')
ax.bar(list(range(feature_num)),
maximums - minimums,
color='r',
align='center')
ax.set_title('feature scale')
plt.xticks(range(feature_num), feature_names)
plt.xticks(list(range(feature_num)), feature_names)
plt.xlim([-1, feature_num])
fig.set_figheight(6)
fig.set_figwidth(10)
......@@ -71,7 +74,7 @@ def load_data(filename, feature_num=14, ratio=0.8):
maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(
axis=0) / data.shape[0]
feature_range(maximums[:-1], minimums[:-1])
for i in xrange(feature_num - 1):
for i in range(feature_num - 1):
data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
offset = int(data.shape[0] * ratio)
UCI_TRAIN_DATA = data[:offset]
......
......@@ -154,8 +154,8 @@ def get_dict(dict_size, reverse=True):
tar_file = paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
if reverse:
src_dict = {v: k for k, v in src_dict.items()}
trg_dict = {v: k for k, v in trg_dict.items()}
src_dict = {v: k for k, v in list(src_dict.items())}
trg_dict = {v: k for k, v in list(trg_dict.items())}
return src_dict, trg_dict
......
......@@ -70,7 +70,9 @@ def __build_dict(tar_file, dict_size, save_path, lang):
fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK))
for idx, word in enumerate(
sorted(
word_dict.iteritems(), key=lambda x: x[1], reverse=True)):
iter(list(word_dict.items())),
key=lambda x: x[1],
reverse=True)):
if idx + 3 == dict_size: break
fout.write("%s\n" % (word[0]))
......
......@@ -14,49 +14,49 @@
from __future__ import print_function
# import all class inside framework into fluid module
import framework
from framework import *
from . import framework
from .framework import *
# import all class inside executor into fluid module
import executor
from executor import *
import trainer
from trainer import Trainer
from trainer import BeginEpochEvent
from trainer import EndEpochEvent
from trainer import BeginStepEvent
from trainer import EndStepEvent
from trainer import CheckpointConfig
import inferencer
from inferencer import Inferencer
import io
import evaluator
import initializer
import layers
import contrib
import nets
import optimizer
import backward
import regularizer
import average
import metrics
import transpiler
from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder
from core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope
from transpiler import DistributeTranspiler, InferenceTranspiler, \
from . import executor
from .executor import *
from . import trainer
from .trainer import Trainer
from .trainer import BeginEpochEvent
from .trainer import EndEpochEvent
from .trainer import BeginStepEvent
from .trainer import EndStepEvent
from .trainer import CheckpointConfig
from . import inferencer
from .inferencer import Inferencer
from . import io
from . import evaluator
from . import initializer
from . import layers
from . import contrib
from . import nets
from . import optimizer
from . import backward
from . import regularizer
from . import average
from . import metrics
from . import transpiler
from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder
from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope
from .transpiler import DistributeTranspiler, InferenceTranspiler, \
memory_optimize, release_memory, DistributeTranspilerConfig
from concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select)
from lod_tensor import create_lod_tensor, create_random_int_lodtensor
import clip
import profiler
import unique_name
import recordio_writer
import parallel_executor
from parallel_executor import *
from .concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select)
from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
from . import clip
from . import profiler
from . import unique_name
from . import recordio_writer
from . import parallel_executor
from .parallel_executor import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor = LoDTensor
......@@ -99,8 +99,8 @@ def __bootstrap__():
None
"""
import sys
import core
import os
from . import core
in_test = 'unittest' in sys.modules
......
......@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import functools
import sys
......@@ -28,7 +29,7 @@ def deprecated(since, instead, extra_message=""):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print >> sys.stderr, err_msg
print(err_msg, file=sys.stderr)
return func(*args, **kwargs)
wrapper.__doc__ += "\n "
......
......@@ -16,7 +16,8 @@ from paddle.fluid import framework as framework
from . import core
import collections
import copy
import unique_name
import six
from . import unique_name
__all__ = ['append_backward']
......@@ -44,17 +45,25 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
"""
op_desc = core.OpDesc()
op_desc.set_type(op_type)
for para, args in inputs.iteritems():
op_desc.set_input(para, args)
for para, args in outputs.iteritems():
op_desc.set_output(para, args)
for para, args in list(inputs.items()):
op_desc.set_input(
para,
list(
map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
args)))
for para, args in list(outputs.items()):
op_desc.set_output(
para,
list(
map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
args)))
op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
if op_role_attr_name not in attrs:
attrs[
op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
for name, val in attrs.iteritems():
for name, val in list(attrs.items()):
if isinstance(val, framework.Block):
op_desc.set_block_attr(name, val.desc)
else:
......@@ -105,7 +114,9 @@ def _strip_grad_suffix_(name):
e.g. x@GRAD ==> x
y@GRAD@RENAME@1 ==> y
"""
pos = name.find(core.grad_var_suffix())
if isinstance(name, six.text_type):
name = name.encode()
pos = name.find(six.b(core.grad_var_suffix()))
return name[:pos] if pos != -1 else name
......@@ -114,7 +125,9 @@ def _append_grad_suffix_(name):
Append grad suffix to the given variable name
e.g. x ==> x@GRAD
"""
return name + core.grad_var_suffix()
if isinstance(name, six.text_type):
name = name.encode()
return name + six.b(core.grad_var_suffix())
def _addup_repetitive_outputs_(op_descs):
......@@ -174,7 +187,7 @@ def _addup_repetitive_outputs_(op_descs):
op_desc.set_output(param_name, arg_names)
renamed_vars[var_name].append(new_name)
for var_name, inputs in renamed_vars.iteritems():
for var_name, inputs in list(renamed_vars.items()):
if len(inputs) > 1:
pending_sum_ops.append(
(_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
......@@ -198,16 +211,19 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
out_arg_names = op_desc.output_arg_names()
if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
return True
if _all_in_set_(
filter(lambda name: name.find(core.grad_var_suffix()) != -1,
op_desc.input_arg_names()), no_grad_set):
if _all_in_set_([
name for name in op_desc.input_arg_names()
if name.find(core.grad_var_suffix()) != -1
], no_grad_set):
no_grad_set.update(out_arg_names)
return True
return False
# Remove ops whose outputs are all in no_grad_dict
op_descs = filter(
lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
op_descs = [
op_desc for op_desc in op_descs
if not _op_can_be_removed_(op_desc, no_grad_set)
]
# Insert fill_zeros_like_op
to_insert = []
for idx, op_desc in enumerate(op_descs):
......@@ -217,12 +233,12 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
"X": [_strip_grad_suffix_(arg)]
}, {"Out": [arg]}, {}), idx))
map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))
list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
return op_descs
import proto.framework_pb2 as framework_pb2
from .proto import framework_pb2
def serialize_op_decs(op_desc):
......@@ -244,8 +260,10 @@ def _callback_lookup_(op):
if op.type == 'parallel_do' and op.attr('use_nccl'):
all_vars = op.block.vars
param_names = set(op.input('parameters'))
param_names = filter(lambda name: all_vars[name].stop_gradient is False,
param_names)
param_names = [
name for name in param_names
if all_vars[name].stop_gradient is False
]
param_grad_names = [n + "@GRAD" for n in param_names]
class ParallelDoCallBack(object):
......@@ -399,7 +417,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
continue
block.desc.var(grad_var_name)
new_vars.add(grad_var_name)
if not grad_to_var.has_key(grad_var_name):
if grad_var_name not in grad_to_var:
continue
grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
# infer_shape and infer_type
......@@ -427,7 +445,7 @@ def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
op_desc.rename_output(name, new_name)
var_map[name] = new_name
for g, ng in var_map.iteritems():
for g, ng in list(var_map.items()):
if g in grad_to_var:
grad_to_var[ng] = grad_to_var[g]
grad_to_var.pop(g)
......@@ -439,7 +457,7 @@ def _get_stop_gradients_(program):
for block in program.blocks:
assert isinstance(block, framework.Block)
block_no_grad_set = set()
for var in block.vars.itervalues():
for var in list(block.vars.values()):
assert isinstance(var, framework.Variable)
if var.stop_gradient:
block_no_grad_set.add(_append_grad_suffix_(var.name))
......@@ -452,51 +470,51 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
"""
Append backward part to main_program.
A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to
specify its forwrd part. The backward part is generated automatically
A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to
specify its forwrd part. The backward part is generated automatically
according to the forward part by this function.
In most cases, users do not need to invoke this function manually. It
In most cases, users do not need to invoke this function manually. It
will be automatically invoked by the optimizer's `minimize` function.
Args:
loss(Variable): The loss variable of the network.
parameter_list(list[string]|None): Names of parameters that need
to be updated by optimizers.
If it is None, all parameters
parameter_list(list[string]|None): Names of parameters that need
to be updated by optimizers.
If it is None, all parameters
will be updated.
Default: None
no_grad_set(set|None): Variables in the Block 0 whose gradients
should be ignored. All variables with
`step_gradient=True` from all blocks will
no_grad_set(set|None): Variables in the Block 0 whose gradients
should be ignored. All variables with
`step_gradient=True` from all blocks will
be automatically added into this set.
Default: None
callbacks(list[callable object]|None): The callbacks are used for
doing some custom jobs during
backward part building. All
callable objects in it will
be invoked once each time a
new gradient operator is added
into the program. The callable
object must has two input
parameters: 'block' and 'context'.
The 'block' is the block which
the new gradient operator will
be added to. The 'context' is a
map, whose keys are gradient
variable names and values are
callbacks(list[callable object]|None): The callbacks are used for
doing some custom jobs during
backward part building. All
callable objects in it will
be invoked once each time a
new gradient operator is added
into the program. The callable
object must has two input
parameters: 'block' and 'context'.
The 'block' is the block which
the new gradient operator will
be added to. The 'context' is a
map, whose keys are gradient
variable names and values are
corresponding original variables.
In addition to this, the 'context'
has another special key-value pair:
the key is string '__current_op_desc__'
and the value is the op_desc of the
gradient operator who has just
triggered the callable object.
In addition to this, the 'context'
has another special key-value pair:
the key is string '__current_op_desc__'
and the value is the op_desc of the
gradient operator who has just
triggered the callable object.
Returns:
list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the
list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the
value is gradient variable.
Raises:
......@@ -535,7 +553,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
no_grad_set = set()
no_grad_set = copy.copy(no_grad_set)
no_grad_dict = _get_stop_gradients_(program)
no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
grad_info_map = dict()
root_block = program.block(0)
......@@ -558,7 +576,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
_append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
grad_to_var, callbacks)
......@@ -697,7 +715,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
no_grad_set = set()
no_grad_set = copy.copy(no_grad_set)
no_grad_dict = _get_stop_gradients_(prog)
no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
fwd_op_num = block.desc.op_size()
......@@ -731,7 +749,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
grad_to_var = dict()
grad_info_map = dict()
_append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)
......
......@@ -13,10 +13,11 @@
# limitations under the License.
import copy
import six
import functools
import layers
import framework
from . import layers
from . import framework
from . import core
__all__ = [
......@@ -80,8 +81,7 @@ def error_clip_callback(block, context):
# the context is a grad_to_var map
grad_to_var = context
op_desc = block.desc.op(block.desc.op_size() - 1)
for grad_n in filter(lambda n: grad_to_var.has_key(n),
op_desc.output_arg_names()):
for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
fwd_var = block._var_recursive(grad_to_var[grad_n])
error_clip = getattr(fwd_var, "error_clip", None)
if not (error_clip is None or isinstance(error_clip,
......@@ -247,8 +247,8 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
"""
def __init__(self, clip_norm, group_name="default_group"):
if not isinstance(group_name, basestring):
raise TypeError("'group_name' must be a basestring.")
if not isinstance(group_name, six.string_types):
raise TypeError("'group_name' must be a %s." % (six.string_types))
self.clip_norm = clip_norm
self.group_name = group_name
......@@ -284,7 +284,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
x=clip_var,
y=layers.elementwise_max(
x=clip_var, y=group_norm_var))
assert group_scale_var.shape == (1L, )
assert group_scale_var.shape == (1, )
self.context[group_scale_name] = group_scale_var
new_grad = layers.elementwise_mul(
......@@ -313,7 +313,7 @@ def set_gradient_clip(clip, param_list=None, program=None):
program = framework.default_main_program()
if param_list is None:
param_list = program.block(0).all_parameters()
if all(isinstance(elem, basestring) for elem in param_list):
if all(isinstance(elem, six.string_types) for elem in param_list):
param_list = [program.block(0).var(elem) for elem in param_list]
if not all(isinstance(elem, framework.Parameter) for elem in param_list):
raise TypeError(
......
......@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from layers.control_flow import BlockGuard, equal
from .layers.control_flow import BlockGuard, equal
from .framework import Operator
from layer_helper import LayerHelper, unique_name
from layers import fill_constant
import core
from .layer_helper import LayerHelper, unique_name
from .layers import fill_constant
from . import core
__all__ = [
'Go', 'make_channel', 'channel_send', 'channel_recv', 'channel_close',
......
......@@ -12,9 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import decoder
from decoder import *
import memory_usage_calc
from memory_usage_calc import *
from . import decoder
from .decoder import *
from . import memory_usage_calc
from .memory_usage_calc import *
__all__ = decoder.__all__ + memory_usage_calc.__all__
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import beam_search_decoder
from beam_search_decoder import *
from . import beam_search_decoder
from .beam_search_decoder import *
__all__ = beam_search_decoder.__all__
......@@ -22,6 +22,7 @@ This API is still under active development and may change drastically.
import contextlib
import numpy as np
import six
from ... import layers
from ...framework import Variable
......@@ -191,7 +192,7 @@ class StateCell(object):
self._helper = LayerHelper('state_cell', name=name)
self._cur_states = {}
self._state_names = []
for state_name, state in states.items():
for state_name, state in six.iteritems(states):
if not isinstance(state, InitState):
raise ValueError('state must be an InitState object.')
self._cur_states[state_name] = state
......@@ -346,7 +347,7 @@ class StateCell(object):
if self._in_decoder and not self._switched_decoder:
self._switch_decoder()
for input_name, input_value in inputs.items():
for input_name, input_value in six.iteritems(inputs):
if input_name not in self._inputs:
raise ValueError('Unknown input %s. '
'Please make sure %s in input '
......@@ -361,7 +362,7 @@ class StateCell(object):
if self._in_decoder and not self._switched_decoder:
self._switched_decoder()
for state_name, decoder_state in self._states_holder.items():
for state_name, decoder_state in six.iteritems(self._states_holder):
if id(self._cur_decoder_obj) not in decoder_state:
raise ValueError('Unknown decoder object, please make sure '
'switch_decoder been invoked.')
......@@ -671,7 +672,7 @@ class BeamSearchDecoder(object):
feed_dict = {}
update_dict = {}
for init_var_name, init_var in self._input_var_dict.items():
for init_var_name, init_var in six.iteritems(self._input_var_dict):
if init_var_name not in self.state_cell._inputs:
raise ValueError('Variable ' + init_var_name +
' not found in StateCell!\n')
......@@ -721,7 +722,8 @@ class BeamSearchDecoder(object):
self.state_cell.update_states()
self.update_array(prev_ids, selected_ids)
self.update_array(prev_scores, selected_scores)
for update_name, var_to_update in update_dict.items():
for update_name, var_to_update in six.iteritems(
update_dict):
self.update_array(var_to_update, feed_dict[update_name])
def read_array(self, init, is_ids=False, is_scores=False):
......
......@@ -12,14 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import core
from . import core
import numpy
import os
import six.moves as six
import six
from six.moves import zip, range, xrange
import multiprocessing
from framework import Variable, default_main_program
from .framework import Variable, default_main_program
__all__ = ['DataFeeder']
......@@ -53,7 +53,7 @@ class DataToLoDTensorConverter(object):
self.data = []
self.lod = []
for i in six.range(lod_level):
for i in six.moves.range(lod_level):
self.lod.append([])
def feed(self, data):
......@@ -142,7 +142,7 @@ class DataFeeder(object):
if program is None:
program = default_main_program()
for each_var in feed_list:
if isinstance(each_var, basestring):
if isinstance(each_var, six.string_types):
each_var = program.block(0).var(each_var)
if not isinstance(each_var, Variable):
raise TypeError("Feed list should contain a list of variable")
......@@ -174,7 +174,7 @@ class DataFeeder(object):
dict: the result of conversion.
"""
converter = []
for lod_level, shape, dtype in six.zip(
for lod_level, shape, dtype in six.moves.zip(
self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
converter.append(
DataToLoDTensorConverter(
......@@ -187,10 +187,12 @@ class DataFeeder(object):
assert len(each_sample) == len(converter), (
"The number of fields in data (%s) does not match " +
"len(feed_list) (%s)") % (len(each_sample), len(converter))
for each_converter, each_slot in six.zip(converter, each_sample):
for each_converter, each_slot in six.moves.zip(converter,
each_sample):
each_converter.feed(each_slot)
ret_dict = {}
for each_name, each_converter in six.zip(self.feed_names, converter):
for each_name, each_converter in six.moves.zip(self.feed_names,
converter):
ret_dict[each_name] = each_converter.done()
return ret_dict
......@@ -212,12 +214,14 @@ class DataFeeder(object):
if isinstance(self.place, core.CUDAPlace):
places = [
core.CUDAPlace(i)
for i in six.xrange(self._get_number_of_places_(num_places))
for i in six.moves.xrange(
self._get_number_of_places_(num_places))
]
else:
places = [
core.CPUPlace()
for _ in six.xrange(self._get_number_of_places_(num_places))
for _ in six.moves.xrange(
self._get_number_of_places_(num_places))
]
if len(iterable) != len(places):
......@@ -227,7 +231,7 @@ class DataFeeder(object):
"must be same.")
place = self.place
for p, batch in six.zip(places, iterable):
for p, batch in six.moves.zip(places, iterable):
self.place = p
yield self.feed(batch)
self.place = place
......
......@@ -14,8 +14,8 @@
import sys
import re
from graphviz import GraphPreviewGenerator
import proto.framework_pb2 as framework_pb2
from .graphviz import GraphPreviewGenerator
from .proto import framework_pb2
from google.protobuf import text_format
_vartype2str_ = [
......
......@@ -15,11 +15,11 @@
import warnings
import numpy as np
import layers
from framework import Program, Variable, program_guard
import unique_name
from layer_helper import LayerHelper
from initializer import Constant
from . import layers
from .framework import Program, Variable, program_guard
from . import unique_name
from .layer_helper import LayerHelper
from .initializer import Constant
__all__ = [
'ChunkEvaluator',
......
......@@ -14,7 +14,8 @@
import numpy as np
import contextlib
from framework import Program, default_main_program, Variable
import six
from .framework import Program, default_main_program, Variable
from . import core
__all__ = [
......@@ -204,19 +205,19 @@ def fetch_var(name, scope=None, return_numpy=True):
def _get_program_cache_key(feed, fetch_list):
feed_var_names = feed.keys()
feed_var_names = list(feed.keys())
def to_name_str(var):
if isinstance(var, Variable):
return var.desc.name()
elif isinstance(var, str):
return var
elif isinstance(var, basestring):
elif isinstance(var, six.string_types):
return str(var)
else:
raise TypeError(str(var) + " should be Variable or str")
fetch_var_names = map(to_name_str, fetch_list)
fetch_var_names = list(map(to_name_str, fetch_list))
return str(feed_var_names + fetch_var_names)
......@@ -229,8 +230,8 @@ class Executor(object):
to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
the variables(or names) that user want to get after program run. Note: the executor will run all
operators in the program but not only the operators dependent by the fetch_list.
It store the global variables into the global scope, and create a local scope for the temporary
variables. The local scope contents will be discarded after every minibatch forward/backward finished.
It store the global variables into the global scope, and create a local scope for the temporary
variables. The local scope contents will be discarded after every minibatch forward/backward finished.
But the global scope variables will be persistent through different runs.
All of ops in program will be running in sequence.
......@@ -345,7 +346,7 @@ class Executor(object):
def _fetch_data(self, fetch_list, fetch_var_name, scope):
outs = [
core.get_fetch_variable(scope, fetch_var_name, i)
for i in xrange(len(fetch_list))
for i in range(len(fetch_list))
]
return outs
......
......@@ -15,21 +15,22 @@
import collections
import contextlib
import re
import six
import numpy as np
import proto.framework_pb2 as framework_pb2
from .proto import framework_pb2
try:
from . import core
except ImportError, e:
except ImportError as e:
raise ImportError(
"""NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
if you encounters \"libmkldnn.so not found\" errors. If you have python
installed in other directory, replace \"/usr/local/lib\" with your own
directory. The original error is: \n""" + e.message)
except Exception, e:
except Exception as e:
raise e
import unique_name
from . import unique_name
__all__ = [
'Program',
......@@ -86,7 +87,7 @@ def convert_np_dtype_to_dtype_(np_dtype):
elif dtype == np.uint8:
return core.VarDesc.VarType.UINT8
else:
raise ValueError("Not supported numpy dtype " + str(dtype))
raise ValueError("Not supported numpy dtype " + six.binary_type(dtype))
def dtype_is_floating(dtype):
......@@ -129,15 +130,15 @@ def _debug_string_(proto, throw_on_error=True):
class Variable(object):
"""
In Fluid, every input and output of an operator is a variable. In most
cases, variables are used for holding different kinds of data or training
labels. A variable belongs to a block. All variable has its own name and
In Fluid, every input and output of an operator is a variable. In most
cases, variables are used for holding different kinds of data or training
labels. A variable belongs to a block. All variable has its own name and
two variables in different blocks could have the same name.
There are many kinds of variables. Each kind of them has its own attributes
and usages. Please reference the framework.proto for details.
There are many kinds of variables. Each kind of them has its own attributes
and usages. Please reference the framework.proto for details.
Most of a Variable's member variables can be setted to be None. It mean
Most of a Variable's member variables can be setted to be None. It mean
it is not available or will be specified later.
Args:
......@@ -197,6 +198,7 @@ class Variable(object):
if name is None:
name = unique_name.generate('_generated_var')
is_new_var = False
name = name if isinstance(name, six.binary_type) else name.encode()
self.desc = self.block.desc.find_var(name)
if self.desc is None:
......@@ -290,13 +292,13 @@ class Variable(object):
assert isinstance(throw_on_error, bool) and isinstance(with_details,
bool)
protostr = self.desc.serialize_to_string()
proto = framework_pb2.VarDesc.FromString(str(protostr))
proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
res_str = _debug_string_(proto, throw_on_error)
if with_details:
additional_attr = ("error_clip", "stop_gradient")
for attr_name in additional_attr:
res_str += "%s: %s\n" % (attr_name,
str(getattr(self, attr_name)))
res_str += "%s: %s\n" % (
attr_name, six.binary_type(getattr(self, attr_name)))
return res_str
__repr__ = __str__
......@@ -369,7 +371,7 @@ def get_all_op_protos():
protostrs = core.get_all_op_protos()
ret_values = []
for pbstr in protostrs:
op_proto = framework_pb2.OpProto.FromString(str(pbstr))
op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
ret_values.append(op_proto)
return ret_values
......@@ -472,7 +474,6 @@ class Operator(object):
inputs=None,
outputs=None,
attrs=None):
self.block = block
self.desc = desc
self.attrs = attrs
......@@ -523,10 +524,19 @@ class Operator(object):
% (in_proto.name, len(in_args)))
in_arg_names = []
for arg in in_args:
if isinstance(arg, basestring):
if isinstance(arg, six.string_types):
in_arg_names.append(arg)
elif isinstance(arg, six.binary_type):
in_arg_names.append(arg.decode())
else:
in_arg_names.append(arg.name)
if isinstance(arg.name, six.string_types):
in_arg_names.append(arg.name)
elif isinstance(arg.name, six.binary_type):
in_arg_names.append(arg.name.decode())
else:
raise TypeError(
"arguments require unicode, str or bytes, but get %s instead."
% (type(arg.name)))
self.desc.set_input(in_proto.name, in_arg_names)
else:
self.desc.set_input(in_proto.name, [])
......@@ -541,8 +551,9 @@ class Operator(object):
if not given == need:
raise ValueError(("Incorrect setting for output(s) of "
"operator \"%s\". Need: [%s] Given: [%s]") %
(type, ", ".join(str(e) for e in need),
", ".join(str(e) for e in given)))
(type,
", ".join(six.binary_type(e) for e in need),
", ".join(six.binary_type(e) for e in given)))
for out_proto in proto.outputs:
out_args = outputs[out_proto.name]
......@@ -554,7 +565,14 @@ class Operator(object):
(out_proto.name, len(out_args)))
out_arg_names = []
for arg in out_args:
out_arg_names.append(arg.name)
if isinstance(arg.name, six.string_types):
out_arg_names.append(arg.name)
elif isinstance(arg.name, six.binary_type):
out_arg_names.append(arg.name.decode())
else:
raise TypeError(
"arguments require unicode, str or bytes, but get %s instead."
% (type(arg.name)))
arg.op = self
self.desc.set_output(out_proto.name, out_arg_names)
......@@ -590,7 +608,7 @@ class Operator(object):
"""
protostr = self.desc.serialize_to_string()
proto = framework_pb2.OpDesc.FromString(str(protostr))
proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
return _debug_string_(proto, throw_on_error)
def __str__(self):
......@@ -845,7 +863,7 @@ class Block(object):
re_add_indent = re.compile(r"\n(.)")
res_str = "blocks {\n idx: %d\n parent_idx: %d" % (
self.idx, self.parent_idx)
for var in self.vars.itervalues():
for var in list(self.vars.values()):
res_str += "\n vars {\n %s }" % re_add_indent.sub(
r"\n \1", var.to_string(throw_on_error, with_details))
for op in self.ops:
......@@ -854,7 +872,8 @@ class Block(object):
res_str += "\n}"
else:
protostr = self.desc.serialize_to_string()
proto = framework_pb2.BlockDesc.FromString(str(protostr))
proto = framework_pb2.BlockDesc.FromString(
six.binary_type(protostr))
res_str = _debug_string_(proto, throw_on_error)
return res_str
......@@ -898,10 +917,11 @@ class Block(object):
Returns:
Variable: the Variable with the giving name.
"""
if not isinstance(name, basestring):
raise TypeError(
"var require string as parameter, but get %s instead." %
(type(name)))
if not isinstance(name, six.string_types):
if not isinstance(name, six.binary_type):
raise TypeError(
"var require string as parameter, but get %s instead." %
(type(name)))
v = self.vars.get(name, None)
if v is None:
raise ValueError("var %s not in this block" % name)
......@@ -949,10 +969,10 @@ class Block(object):
raise ValueError("Var {0} is not found recursively".format(name))
def all_parameters(self):
return list(self._iter_parameters())
return list(self.iter_parameters())
def _iter_parameters(self):
return (item[1] for item in self.vars.iteritems()
def iter_parameters(self):
return (item[1] for item in list(self.vars.items())
if isinstance(item[1], Parameter))
def create_var(self, *args, **kwargs):
......@@ -1132,7 +1152,7 @@ class Block(object):
self.create_var(name=var.name(), desc=var, type=var.type())
# sync variables removed from c++ end
for var in self.vars.keys():
for var in list(self.vars.keys()):
if not self.desc.find_var(var):
self.vars.pop(var)
......@@ -1204,7 +1224,7 @@ class Block(object):
if not isinstance(other, Block):
raise TypeError(
"_copy_param_info_from should be invoked with Block")
for p in other._iter_parameters():
for p in other.iter_parameters():
assert isinstance(p, Parameter)
v = self.vars.get(p.name, None)
if v is None:
......@@ -1403,7 +1423,8 @@ class Program(object):
res_str += block.to_string(throw_on_error, with_details)
else:
protostr = self.desc.serialize_to_string()
proto = framework_pb2.ProgramDesc.FromString(str(protostr))
proto = framework_pb2.ProgramDesc.FromString(
six.binary_type(protostr))
res_str = _debug_string_(proto, throw_on_error)
return res_str
......@@ -1501,7 +1522,7 @@ class Program(object):
else:
p = Program()
p.desc = core.ProgramDesc(self.desc)
p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
p._sync_with_cpp()
p._copy_param_info_from(self)
......@@ -1553,7 +1574,7 @@ class Program(object):
targets_idx.append([t.block.idx, t.idx])
res = Program()
res.desc = core.prune(self.desc, targets_idx)
res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
res._sync_with_cpp()
return res
......@@ -1564,7 +1585,7 @@ class Program(object):
2. Remove the :code:`read_op` if exists.
3. change the :code:`is_test`
3. change the :code:`is_test`
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
......@@ -1594,13 +1615,13 @@ class Program(object):
root_block._remove_var(var.name())
# change all `is_test` attributes to True
for i in xrange(res.desc.num_blocks()):
for i in range(res.desc.num_blocks()):
block = res.desc.block(i)
for j in xrange(block.op_size()):
for j in range(block.op_size()):
op = block.op(j)
if op.has_attr('is_test'):
op.set_attr('is_test', True)
res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
res._sync_with_cpp()
return res
......@@ -1613,14 +1634,14 @@ class Program(object):
and deserialization.
Args:
binary_str(str): The binary prootbuf string.
binary_str_type(str): The binary prootbuf string.
Returns:
Program: A deserialized program desc.
"""
p = Program()
p.desc = core.ProgramDesc(binary_str)
p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
p._sync_with_cpp()
return p
......@@ -1648,7 +1669,7 @@ class Program(object):
self._seed = seed
def __repr__(self):
return str(self)
return self.__str__()
def global_block(self):
"""
......@@ -1759,7 +1780,7 @@ class Program(object):
if len(self.blocks) != len(other.blocks):
raise ValueError("_copy_param_info_from should be invoked with two "
"program, with represent the same topology")
for var in other.global_block().vars.itervalues():
for var in list(other.global_block().vars.values()):
if var.is_data:
self.global_block().var(var.name).is_data = True
......@@ -1771,15 +1792,15 @@ class Program(object):
iterable: The generator will yield every variable in this program.
"""
for each_block in self.blocks:
for each_var in each_block.vars.itervalues():
for each_var in list(each_block.vars.values()):
yield each_var
class Parameter(Variable):
"""
Parameter is derived from Variable. A parameter is a persistable
Parameter is derived from Variable. A parameter is a persistable
Variable, and will be updated by optimizers after each iteration.
The training of a neural network is essentially the updating of
The training of a neural network is essentially the updating of
its parameters.
Relative to a general Variable, a Parameter has several its own
......@@ -1845,8 +1866,8 @@ class Parameter(Variable):
additional_attr = ("trainable", "optimize_attr", "regularizer",
"gradient_clip_attr", "do_model_average")
for attr_name in additional_attr:
res_str += "%s: %s\n" % (attr_name,
str(getattr(self, attr_name)))
res_str += "%s: %s\n" % (
attr_name, six.binary_type(getattr(self, attr_name)))
else:
res_str = Variable.to_string(self, throw_on_error, False)
return res_str
......
......@@ -14,12 +14,13 @@
import os
import random
import six
import subprocess
import logging
def crepr(v):
if type(v) is str or type(v) is unicode:
if isinstance(v, six.string_types):
return '"%s"' % v
return str(v)
......@@ -104,7 +105,7 @@ class Graph(object):
def _rank_repr(self):
ranks = sorted(
self.rank_groups.items(),
list(self.rank_groups.items()),
cmp=lambda a, b: a[1].priority > b[1].priority)
repr = []
for x in ranks:
......@@ -148,7 +149,7 @@ class Node(object):
name=self.name,
label=self.label,
extra=',' + ','.join("%s=%s" % (key, crepr(value))
for key, value in self.attrs.items())
for key, value in list(self.attrs.items()))
if self.attrs else "")
return reprs
......@@ -172,7 +173,7 @@ class Edge(object):
target=self.target.name,
extra="" if not self.attrs else
"[" + ','.join("{}={}".format(attr[0], crepr(attr[1]))
for attr in self.attrs.items()) + "]")
for attr in list(self.attrs.items())) + "]")
return repr
......
......@@ -14,14 +14,14 @@
import contextlib
import core
import executor
import framework
import io
import parallel_executor
import unique_name
from trainer import check_and_get_place
from . import core
from . import executor
from . import framework
from . import io
from . import parallel_executor
from . import unique_name
from .trainer import check_and_get_place
__all__ = ['Inferencer', ]
......
......@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import framework
from . import framework
import numpy as np
import contextlib
from framework import convert_np_dtype_to_dtype_
from core import VarDesc
from .framework import convert_np_dtype_to_dtype_
from .core import VarDesc
__all__ = [
'Constant', 'Uniform', 'Normal', 'Xavier', 'Bilinear', 'MSRA',
......
此差异已折叠。
......@@ -14,12 +14,14 @@
import copy
import itertools
import six
from framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating
import unique_name
from .framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating
from . import unique_name
from paddle.fluid.initializer import Constant, Xavier
from param_attr import ParamAttr, WeightNormParamAttr
import core
from .param_attr import ParamAttr, WeightNormParamAttr
from . import core
from six.moves import zip
class LayerHelper(object):
......@@ -83,7 +85,7 @@ class LayerHelper(object):
raise ValueError("parameter number mismatch")
elif len(param_attr) == 1 and length != 1:
tmp = [None] * length
for i in xrange(length):
for i in range(length):
tmp[i] = copy.deepcopy(param_attr[0])
param_attr = tmp
return param_attr
......@@ -91,7 +93,7 @@ class LayerHelper(object):
def iter_inputs_and_params(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
param_attrs = self.multiple_param_attr(len(inputs))
for ipt, param_attr in itertools.izip(inputs, param_attrs):
for ipt, param_attr in zip(inputs, param_attrs):
yield ipt, param_attr
def input_dtype(self, input_param_name='input'):
......@@ -218,7 +220,7 @@ class LayerHelper(object):
norm = __norm_op(reshape, dim=0, block=block)
__reshape_op(norm, out=out, shape=out_shape, block=block)
else:
perm = range(len(x.shape))
perm = list(range(len(x.shape)))
perm[0], perm[dim] = dim, 0
transpose = __transpose_op(x, perm, block=block)
norm = __norm_op(transpose, dim=0, block=block)
......@@ -397,8 +399,10 @@ class LayerHelper(object):
act = self.kwargs.get('act', None)
if act is None:
return input_var
if isinstance(act, basestring):
if isinstance(act, six.string_types):
act = {'type': act}
else:
raise TypeError(str(act) + " should be unicode or str")
if 'use_cudnn' in self.kwargs and self.kwargs.get('use_cudnn'):
act['use_cudnn'] = self.kwargs.get('use_cudnn')
......
......@@ -12,25 +12,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import ops
from ops import *
import nn
from nn import *
import io
from io import *
import tensor
from tensor import *
import control_flow
from control_flow import *
import device
from device import *
import math_op_patch
from math_op_patch import *
import detection
from detection import *
import metric_op
from metric_op import *
from learning_rate_scheduler import *
from . import ops
from .ops import *
from . import nn
from .nn import *
from . import io
from .io import *
from . import tensor
from .tensor import *
from . import control_flow
from .control_flow import *
from . import device
from .device import *
from . import math_op_patch
from .math_op_patch import *
from . import detection
from .detection import *
from . import metric_op
from .metric_op import *
from .learning_rate_scheduler import *
__all__ = []
__all__ += nn.__all__
......
......@@ -13,15 +13,16 @@
# limitations under the License.
import contextlib
from layer_function_generator import autodoc, templatedoc
from tensor import assign, fill_constant
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
from .. import core
from ..framework import Program, Variable, Operator
from ..layer_helper import LayerHelper, unique_name
from ..initializer import force_init_on_cpu
from ops import logical_and, logical_not, logical_or
from .ops import logical_and, logical_not, logical_or
import numpy
import warnings
from functools import reduce
__all__ = [
'While',
......@@ -276,7 +277,7 @@ class ParallelDo(object):
avg_cost = fluid.layers.mean(x=cost)
.. warning::
It will be soon deprecated, please use ParallelExecutor instead.
"""
......@@ -601,7 +602,7 @@ class StaticRNN(object):
boot_memories = []
pre_memories = []
memories = []
for _, mem in self.memories.iteritems():
for _, mem in list(self.memories.items()):
boot_memories.append(mem.init)
pre_memories.append(mem.pre_mem.name)
mem_var = rnn_block.var(mem.mem.name)
......@@ -819,21 +820,21 @@ def max_sequence_len(rank_table):
def lod_tensor_to_array(x, table):
"""
"""
Convert a LoDTensor to a LoDTensorArray.
This function split a LoDTesnor to a LoDTensorArray according to its LoD
information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
PaddlePaddle. The generated LoDTensorArray of this function can be further read
or written by `read_from_array()` and `write_to_array()` operators. However,
this function is generally an internal component of PaddlePaddle `DynamicRNN`.
This function split a LoDTesnor to a LoDTensorArray according to its LoD
information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
PaddlePaddle. The generated LoDTensorArray of this function can be further read
or written by `read_from_array()` and `write_to_array()` operators. However,
this function is generally an internal component of PaddlePaddle `DynamicRNN`.
Users should not use it directly.
Args:
x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
table (ParamAttr|list): The variable that stores the level of lod
which is ordered by sequence length in
descending order. It is generally generated
descending order. It is generally generated
by `layers.lod_rank_table()` API.
Returns:
......@@ -1067,9 +1068,9 @@ def array_read(array, i):
Given:
array = [0.6, 0.1, 0.3, 0.1]
And:
i = 2
Then:
......@@ -1176,9 +1177,9 @@ def array_length(array):
class ConditionalBlockGuard(BlockGuard):
"""
ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
holding a ConditionalBlock, and helping users entering and exiting the
ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
holding a ConditionalBlock, and helping users entering and exiting the
ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
is generally an internal component of IfElse, users should not use it directly.
"""
......@@ -1512,7 +1513,7 @@ class IfElse(object):
def __call__(self):
if self.status != self.OUT_IF_ELSE_BLOCKS:
raise ValueError("IfElse::__call__ must be out of sub-block")
false_len, true_len = map(len, self.output_table)
false_len, true_len = list(map(len, self.output_table))
if false_len == 0 and true_len == 0:
raise ValueError("Must invoke true_block/false_block before "
"__call__")
......@@ -1932,7 +1933,7 @@ def is_empty(x, cond=None, **ignored):
Args:
x (Variable): The Variable to be tested.
cond (Variable|None): Output parameter. Returns the test result
cond (Variable|None): Output parameter. Returns the test result
of given 'x'. Default: None
Returns:
......
......@@ -15,12 +15,13 @@
All layers just related to the detection neural network.
"""
from layer_function_generator import generate_layer_fn
from layer_function_generator import autodoc, templatedoc
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
from ..layer_helper import LayerHelper
import tensor
import nn
from . import tensor
from . import nn
import math
from functools import reduce
__all__ = [
'prior_box',
......@@ -1032,7 +1033,7 @@ def multi_box_head(inputs,
min_sizes = []
max_sizes = []
step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
for ratio in xrange(min_ratio, max_ratio + 1, step):
for ratio in range(min_ratio, max_ratio + 1, step):
min_sizes.append(base_size * ratio / 100.)
max_sizes.append(base_size * (ratio + step) / 100.)
min_sizes = [base_size * .10] + min_sizes
......
......@@ -15,7 +15,7 @@
All util layers.
"""
from layer_function_generator import autodoc
from .layer_function_generator import autodoc
from ..framework import unique_name
from ..layer_helper import LayerHelper
from ..annotations import deprecated
......
......@@ -16,8 +16,8 @@ import multiprocessing
import threading
from ..data_feeder import DataFeeder
from control_flow import BlockGuard
from layer_function_generator import templatedoc
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
from .. import core
from ..executor import global_scope
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
......@@ -69,7 +69,7 @@ def data(name,
"""
helper = LayerHelper('data', **locals())
shape = list(shape)
for i in xrange(len(shape)):
for i in range(len(shape)):
if shape[i] is None:
shape[i] = -1
append_batch_size = False
......@@ -387,9 +387,9 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
Create a uniform random data generator
This layer returns a Reader Variable.
Instead of opening a file and reading data from it, this
Reader Variable generates float uniform random data by itself.
It can be used as a dummy reader to test a network without
Instead of opening a file and reading data from it, this
Reader Variable generates float uniform random data by itself.
It can be used as a dummy reader to test a network without
opening a real file.
Args:
......@@ -707,9 +707,9 @@ def open_files(filenames,
"""
Open files
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
Args:
filenames(list): The list of file names.
......@@ -825,9 +825,9 @@ def shuffle(reader, buffer_size):
def batch(reader, batch_size):
"""
This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized
This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized
to the form of batches.
Args:
......@@ -852,11 +852,11 @@ def batch(reader, batch_size):
# If we read data with the raw_reader:
# data = fluid.layers.read_file(raw_reader)
# We can only get data instance by instance.
#
#
# However, if we read data with the batch_reader:
# data = fluid.layers.read_file(batch_reader)
# Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead
# Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead
# of an instance.
"""
return __create_unshared_decorated_reader__(
......@@ -903,8 +903,8 @@ def read_file(reader):
"""
Execute the given reader and get data via it.
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on.
Args:
......@@ -1005,7 +1005,7 @@ class Preprocessor(object):
source_lod_levels = self.underlying_reader.desc.lod_levels()
self.source_var_names = [
unique_name("preprocessor_source")
for _ in xrange(len(source_shapes))
for _ in range(len(source_shapes))
]
source_vars = []
for var_name, shape, dtype, lod_level in zip(
......
......@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import cStringIO
import functools
import warnings
import string
from six.moves import cStringIO
from ..proto import framework_pb2
from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper
......@@ -70,7 +70,7 @@ def _generate_doc_string_(op_proto):
if not isinstance(op_proto, framework_pb2.OpProto):
raise TypeError("OpProto should be `framework_pb2.OpProto`")
buf = cStringIO.StringIO()
buf = cStringIO()
buf.write(escape_math(op_proto.comment))
buf.write('\nArgs:\n')
for each_input in op_proto.inputs:
......@@ -119,9 +119,9 @@ def generate_layer_fn(op_type):
"""
op_proto = OpProtoHolder.instance().get_op_proto(op_type)
not_intermediate_outputs = \
filter(lambda output: not output.intermediate, op_proto.outputs)
[output for output in op_proto.outputs if not output.intermediate]
intermediate_outputs = \
filter(lambda output: output.intermediate, op_proto.outputs)
[output for output in op_proto.outputs if output.intermediate]
if len(not_intermediate_outputs) != 1:
raise ValueError("Only one non intermediate output operator can be",
......
......@@ -20,10 +20,10 @@ User can also implement their own learning_rate_decay
strategy according to this module.
"""
import control_flow
import nn
import ops
import tensor
from . import control_flow
from . import nn
from . import ops
from . import tensor
from ..initializer import init_on_cpu
from ..framework import default_main_program, Parameter
......
......@@ -13,7 +13,7 @@
# limitations under the License.
from ..framework import Variable, unique_name
from layer_function_generator import OpProtoHolder
from .layer_function_generator import OpProtoHolder
from ..initializer import force_init_on_cpu
......
......@@ -20,7 +20,7 @@ from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
from ..param_attr import ParamAttr
import nn
from . import nn
__all__ = ['accuracy', 'auc']
......
......@@ -33,11 +33,12 @@ from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
from ..param_attr import ParamAttr
from layer_function_generator import autodoc, templatedoc
from tensor import concat
import utils
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
import random
from .. import unique_name
from functools import reduce
__all__ = [
'fc',
......@@ -4849,7 +4850,7 @@ def dice_loss(input, label, epsilon=0.00001):
loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
"""
label = one_hot(label, depth=input.shape[-1])
reduce_dim = range(1, len(input.shape))
reduce_dim = list(range(1, len(input.shape)))
inse = reduce_sum(input * label, dim=reduce_dim)
dice_denominator = reduce_sum(
input, dim=reduce_dim) + reduce_sum(
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from layer_function_generator import generate_layer_fn
from .layer_function_generator import generate_layer_fn
__activations__ = [
'sigmoid',
......
......@@ -18,7 +18,7 @@ from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
from ..initializer import Constant, force_init_on_cpu
from ..core import VarDesc
from layer_function_generator import templatedoc
from .layer_function_generator import templatedoc
import numpy
__all__ = [
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import core
from . import core
import numpy as np
__all__ = ['create_lod_tensor', 'create_random_int_lodtensor']
......@@ -24,7 +24,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
Create a lod tensor by doing the following:
1. Check that the length-based level of detail (LoD) also known as
1. Check that the length-based level of detail (LoD) also known as
recursive_sequence_lengths of the input is valid.
2. Convert recursive_sequence_lengths to a offset-based LoD.
......@@ -33,7 +33,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
CPU or GPU device (based on input place).
4. Set the level of detail (LoD) using the offset-based LoD.
Examples:
Suppose we want LoDTensor to hold data for sequences of word, where each
......@@ -51,7 +51,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
Args:
data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a
list holding the data to be copied.
recursive_seq_lens(list): a list of lists indicating the length-based level of detail
recursive_seq_lens(list): a list of lists indicating the length-based level of detail
info specified by the user.
place(Place): CPU or GPU place indicating where the data in the new
LoDTensor will be stored.
......@@ -62,10 +62,10 @@ def create_lod_tensor(data, recursive_seq_lens, place):
if isinstance(data, core.LoDTensor):
return create_lod_tensor(np.array(data), recursive_seq_lens, place)
elif isinstance(data, list):
# When input data is a list, it only deal with the case where the base element
# is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
# LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
# of words or other indexes in the sequence.
# When input data is a list, it only deal with the case where the base element
# is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
# LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
# of words or other indexes in the sequence.
new_recursive_seq_lens = []
for seq in data:
new_recursive_seq_lens.append(len(seq))
......@@ -109,12 +109,12 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
Suppose we want LoDTensor to hold data for sequences of word, where each
word is represented by an integer. If we want to create a LoDTensor to
represent two sentences, one of 2 words, and one of 3 words. Then
'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
for two sentences.
Args:
recursive_seq_lens(list): a list of lists indicating the length-based
recursive_seq_lens(list): a list of lists indicating the length-based
level of detail info specified by the user.
base_shape(list): the shape of the basic element to be held by the
LoDTensor.
......@@ -124,11 +124,11 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
high(int): the upper bound of the random integers.
Returns:
A fluid LoDTensor object with tensor data and recursive_seq_lens info.
A fluid LoDTensor object with tensor data and recursive_seq_lens info.
"""
assert isinstance(base_shape, list), "base_shape should be a list"
# append the total number of basic elements to the front of its shape
overall_shape = [sum(recursive_seq_lens[-1])] + base_shape
# the range of integer data elements is [low, high]
# the range of integer data elements is [low, high]
data = np.random.random_integers(low, high, overall_shape).astype("int64")
return create_lod_tensor(data, recursive_seq_lens, place)
......@@ -79,10 +79,10 @@ class MetricBase(object):
"""
states = {
attr: value
for attr, value in self.__dict__.iteritems()
for attr, value in list(self.__dict__.items())
if not attr.startswith("_")
}
for attr, value in states.iteritems():
for attr, value in list(states.items()):
if isinstance(value, int):
setattr(self, attr, 0)
elif isinstance(value, float):
......@@ -105,7 +105,7 @@ class MetricBase(object):
"""
states = {
attr: value
for attr, value in self.__dict__.iteritems()
for attr, value in list(self.__dict__.items())
if not attr.startswith("_")
}
config = {}
......
......@@ -24,7 +24,7 @@ logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
try:
from graphviz import Digraph
from .graphviz import Digraph
except ImportError:
logger.info(
'Cannot import graphviz, which is required for drawing a network. This '
......@@ -77,7 +77,7 @@ def parse_graph(program, graph, var_dict, **kwargs):
# fill the known variables
for block in program.blocks:
for var in block.vars:
if not var_dict.has_key(var):
if var not in var_dict:
var_dict[var] = "Feed"
temp_id = 0
......@@ -93,17 +93,17 @@ def parse_graph(program, graph, var_dict, **kwargs):
var_dict[arg] = op.type
for e in op.inputs:
for arg in e.arguments:
if var_dict.has_key(arg):
if arg in var_dict:
graph.edge(**draw_edge(var_dict, op, e, arg))
break # only plot the first block
def draw_graph(startup_program, main_program, **kwargs):
if kwargs.has_key("graph_attr"):
if "graph_attr" in kwargs:
GRAPH_STYLE.update(kwargs[graph_attr])
if kwargs.has_key("node_attr"):
if "node_attr" in kwargs:
OP_STYLE.update(kwargs[node_attr])
if kwargs.has_key("edge_attr"):
if "edge_attr" in kwargs:
VAR_STYLE.update(kwargs[edge_attr])
graph_id = unique_id()
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import layers
from . import layers
__all__ = [
"simple_img_conv_pool",
......@@ -210,7 +210,7 @@ def img_conv_group(input,
conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)
for i in xrange(len(conv_num_filter)):
for i in range(len(conv_num_filter)):
local_conv_act = conv_act
if conv_with_batchnorm[i]:
local_conv_act = None
......@@ -488,10 +488,11 @@ def scaled_dot_product_attention(queries,
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
return layers.reshape(
x=trans_x,
shape=map(int, [
trans_x.shape[0], trans_x.shape[1],
trans_x.shape[2] * trans_x.shape[3]
]))
shape=list(
map(int, [
trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
trans_x.shape[3]
])))
q, k, v = __compute_qkv(queries, keys, values, num_heads)
......
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import paddle.fluid.core as core
import paddle.fluid.proto.framework_pb2 as framework_pb2
......@@ -24,13 +26,13 @@ def get_all_op_protos():
protostrs = core.get_all_op_protos()
ret_values = []
for pbstr in protostrs:
op_proto = framework_pb2.OpProto.FromString(str(pbstr))
op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
ret_values.append(op_proto)
return ret_values
def is_str(s):
return isinstance(s, str) or isinstance(s, unicode)
return isinstance(s, six.string_types)
class OpDescCreationMethod(object):
......@@ -189,7 +191,7 @@ class OperatorFactory(object):
return self.get_op_info(t).method(**kwargs)
def types(self):
return self.op_methods.keys()
return list(self.op_methods.keys())
def get_op_info(self, t):
if t not in self.op_methods:
......@@ -197,13 +199,13 @@ class OperatorFactory(object):
return self.op_methods.get(t)
def get_op_input_names(self, type):
return map(lambda x: x[0], self.get_op_info(type).inputs)
return [x[0] for x in self.get_op_info(type).inputs]
def get_op_inputs(self, type):
return self.get_op_info(type).inputs
def get_op_output_names(self, type):
return map(lambda x: x[0], self.get_op_info(type).outputs)
return [x[0] for x in self.get_op_info(type).outputs]
def get_op_outputs(self, type):
return self.get_op_info(type).outputs
......
......@@ -14,15 +14,15 @@
import re
from collections import defaultdict
from paddle.fluid.framework import Program, Variable
import framework
import layers
from backward import append_backward
from framework import program_guard
import unique_name
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
from clip import append_gradient_clip_ops, error_clip_callback
from . import framework
from . import layers
from .backward import append_backward
from .framework import program_guard
from . import unique_name
from .initializer import Constant
from .layer_helper import LayerHelper
from .regularizer import append_regularization_ops
from .clip import append_gradient_clip_ops, error_clip_callback
from contextlib import contextmanager
__all__ = [
......
......@@ -12,10 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import core
from __future__ import print_function
import multiprocessing
import framework
import executor
from . import core
from . import framework
from . import executor
import warnings
import sys
import os
......@@ -94,7 +95,7 @@ class ParallelExecutor(object):
self._places = []
self._act_places = []
if use_cuda:
for i in xrange(core.get_cuda_device_count()):
for i in range(core.get_cuda_device_count()):
p = core.Place()
self._act_places.append(core.CUDAPlace(i))
p.set_place(self._act_places[-1])
......@@ -102,7 +103,7 @@ class ParallelExecutor(object):
else:
cpu_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
for i in xrange(cpu_num):
for i in range(cpu_num):
p = core.Place()
self._act_places.append(core.CPUPlace())
p.set_place(self._act_places[-1])
......@@ -143,16 +144,16 @@ class ParallelExecutor(object):
) if share_vars_from else []
self.persistable_vars = [
v.name
for v in filter(
lambda var: var.persistable and var.type != core.VarDesc.VarType.RAW,
main.list_vars())
v.name for v in [
var for var in main.list_vars()
if var.persistable and var.type != core.VarDesc.VarType.RAW
]
]
self.executor = core.ParallelExecutor(
self._places,
set([
p.name for p in main.global_block()._iter_parameters()
p.name for p in main.global_block().iter_parameters()
if not p.stop_gradient
]),
set(self.persistable_vars), main.desc, loss_name
......@@ -227,7 +228,9 @@ class ParallelExecutor(object):
"""
if feed is None and feed_dict is not None:
feed = feed_dict
print >> sys.stderr, "`feed_dict` is deprecated. Please use `feed=`"
print(
"`feed_dict` is deprecated. Please use `feed=`",
file=sys.stderr)
if isinstance(feed, dict):
feed_tensor_dict = dict()
......
......@@ -12,8 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from initializer import Initializer, Xavier, Constant
from regularizer import WeightDecayRegularizer
import six
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
__all__ = [
'ParamAttr',
......@@ -134,7 +136,7 @@ class ParamAttr(object):
return [ParamAttr._to_attr(a) for a in arg]
elif isinstance(arg, ParamAttr):
return arg
elif isinstance(arg, str) or isinstance(arg, unicode):
elif isinstance(arg, six.string_types):
return ParamAttr(name=arg)
elif isinstance(arg, Initializer):
return ParamAttr(initializer=arg)
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import core
from . import core
from contextlib import contextmanager
import os
......@@ -224,7 +224,7 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
If the state == 'All', a profile proto file will be written to
`profile_path`. This file records timeline information during the execution.
Then users can visualize this file to see the timeline, please refer
Then users can visualize this file to see the timeline, please refer
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/timeline.md
Args:
......
......@@ -13,8 +13,8 @@
# limitations under the License.
import os
import core
import contextlib
from . import core
__all__ = [
'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files'
]
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import framework
from . import framework
from . import core
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
......
......@@ -63,7 +63,7 @@ def train(use_cuda, train_program, params_dirname):
if event.step == 10:
test_metrics = trainer.test(
reader=test_reader, feed_order=['x', 'y'])
print test_metrics
print(test_metrics)
'''
...
['25.768919467926025']
......
......@@ -28,11 +28,12 @@ images per class.
"""
import cPickle
import itertools
import numpy
import paddle.v2.dataset.common
import tarfile
from six.moves import cPickle as pickle
from six.moves import zip
__all__ = ['train10']
......@@ -46,7 +47,7 @@ def reader_creator(filename, sub_name, batch_size=None):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
for sample, label in zip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader():
......@@ -56,7 +57,7 @@ def reader_creator(filename, sub_name, batch_size=None):
batch_count = 0
for name in names:
batch = cPickle.load(f.extractfile(name))
batch = pickle.load(f.extractfile(name))
for item in read_batch(batch):
if isinstance(batch_size, int) and batch_count > batch_size:
break
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy as np
......@@ -178,14 +176,15 @@ def train(use_cuda, train_program, params_dirname):
if float(avg_cost) < 100.0: # Large value to increase CI speed
trainer.save_params(params_dirname)
else:
print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
float(avg_cost)))
print(
('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
float(avg_cost))))
if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics)))
event.step, event.epoch, list(map(np.array, event.metrics))))
if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname)
trainer.stop()
......@@ -207,14 +206,14 @@ def infer(use_cuda, inference_program, params_dirname):
inference_program, param_path=params_dirname, place=place)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
......
......@@ -250,7 +250,7 @@ def decode_main(use_cuda, is_sparse):
feeder = fluid.DataFeeder(feed_list, place)
for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
......@@ -259,7 +259,7 @@ def decode_main(use_cuda, is_sparse):
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
print result_ids.recursive_sequence_lengths()
print(result_ids.recursive_sequence_lengths())
break
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.fluid as fluid
import paddle.fluid.core as core
......@@ -89,8 +89,10 @@ def train(use_cuda, train_program, params_dirname):
if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(numpy.array, event.metrics)))
print(
("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch,
list(map(numpy.array, event.metrics)))))
train_reader = paddle.batch(
paddle.reader.shuffle(
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.fluid as fluid
import paddle
......
......@@ -186,8 +186,9 @@ def train(use_cuda, train_program, params_dirname):
trainer.save_params(params_dirname)
trainer.stop()
else:
print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
float(avg_cost)))
print(
('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
float(avg_cost))))
if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.")
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from functools import partial
......@@ -98,7 +96,7 @@ def train(use_cuda, train_program, params_dirname):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics)))
event.step, event.epoch, list(map(np.array, event.metrics))))
if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname)
trainer.stop()
......@@ -125,14 +123,14 @@ def infer(use_cuda, inference_program, params_dirname=None):
place=place)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from functools import partial
......@@ -113,7 +111,7 @@ def train(use_cuda, train_program, params_dirname):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics)))
event.step, event.epoch, list(map(np.array, event.metrics))))
if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname)
trainer.stop()
......@@ -140,14 +138,14 @@ def infer(use_cuda, inference_program, params_dirname=None):
place=place)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from functools import partial
......@@ -107,7 +105,7 @@ def train(use_cuda, train_program, params_dirname):
sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics)))
event.step, event.epoch, list(map(np.array, event.metrics))))
if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname)
trainer.stop()
......@@ -135,14 +133,14 @@ def infer(use_cuda, inference_program, params_dirname=None):
place=place)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid.layers.device import get_places
import unittest
import paddle.fluid as fluid
......@@ -175,7 +175,7 @@ def train(word_dict,
def train_loop(main_program):
exe.run(fluid.default_startup_program())
for pass_id in xrange(PASS_NUM):
for pass_id in range(PASS_NUM):
for data in train_data():
cost_val, acc_val = exe.run(main_program,
feed=feeder.feed(data),
......@@ -235,14 +235,14 @@ def infer(word_dict, use_cuda, save_dirname=None):
word_dict_len = len(word_dict)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
......
......@@ -114,7 +114,7 @@ def infer(use_cuda, save_dirname=None):
test_reader = paddle.batch(
paddle.dataset.uci_housing.test(), batch_size=batch_size)
test_data = test_reader().next()
test_data = next(test_reader())
test_feat = numpy.array(
[data[0] for data in test_data]).astype("float32")
test_label = numpy.array(
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import contextlib
......@@ -121,7 +119,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
# Test program
# Test program
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
......
......@@ -181,7 +181,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time = time.time()
batch_id = 0
for pass_id in xrange(PASS_NUM):
for pass_id in range(PASS_NUM):
for data in train_data():
cost = exe.run(main_program,
feed=feeder.feed(data),
......@@ -248,14 +248,14 @@ def infer(use_cuda, save_dirname=None):
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
......
......@@ -199,7 +199,7 @@ def train_main(use_cuda, is_sparse, is_local=True):
feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0
for pass_id in xrange(1):
for pass_id in range(1):
for data in train_data():
outs = exe.run(main_program,
feed=feeder.feed(data),
......@@ -273,7 +273,7 @@ def decode_main(use_cuda, is_sparse):
feeder = fluid.DataFeeder(feed_list, place)
for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
......@@ -282,7 +282,7 @@ def decode_main(use_cuda, is_sparse):
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
print result_ids.recursive_sequence_lengths()
print(result_ids.recursive_sequence_lengths())
break
......
......@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle.fluid.core as core
import math
......
......@@ -260,15 +260,15 @@ def infer(use_cuda, save_dirname=None):
# Use the first data from paddle.dataset.movielens.test() as input
assert feed_target_names[0] == "user_id"
# Use create_lod_tensor(data, recursive_sequence_lengths, place) API
# to generate LoD Tensor where `data` is a list of sequences of index
# numbers, `recursive_sequence_lengths` is the length-based level of detail
# Use create_lod_tensor(data, recursive_sequence_lengths, place) API
# to generate LoD Tensor where `data` is a list of sequences of index
# numbers, `recursive_sequence_lengths` is the length-based level of detail
# (lod) info associated with `data`.
# For example, data = [[10, 2, 3], [2, 3]] means that it contains
# two sequences of indexes, of length 3 and 2, respectively.
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
# level of detail info, indicating that `data` consists of two sequences
# of length 3 and 2, respectively.
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
# level of detail info, indicating that `data` consists of two sequences
# of length 3 and 2, respectively.
user_id = fluid.create_lod_tensor([[1]], [[1]], place)
assert feed_target_names[1] == "gender_id"
......
......@@ -175,7 +175,7 @@ def train(use_cuda, save_dirname=None):
feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0
for pass_id in xrange(2):
for pass_id in range(2):
for data in train_data():
outs = exe.run(framework.default_main_program(),
feed=feeder.feed(data),
......@@ -213,14 +213,14 @@ def infer(use_cuda, save_dirname=None):
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[4, 6]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for two sentences of
# length 4 and 6, respectively.
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for two sentences of
# length 4 and 6, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[4, 6]]
base_shape = [1]
......
......@@ -85,9 +85,11 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
pd = fluid.layers.ParallelDo(places)
with pd.do():
avg_cost, predict_word = __network__(
map(pd.read_input, [
first_word, second_word, third_word, forth_word, next_word
]))
list(
map(pd.read_input, [
first_word, second_word, third_word, forth_word,
next_word
])))
pd.write_output(avg_cost)
avg_cost = fluid.layers.mean(pd())
......@@ -167,11 +169,11 @@ def infer(use_cuda, save_dirname=None):
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
# Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
# is simply an index to look up for the corresponding word vector and hence
# the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
# which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
# meaning there is only one level of detail and there is only one sequence of
# Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
# is simply an index to look up for the corresponding word vector and hence
# the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
# which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
# meaning there is only one level of detail and there is only one sequence of
# one word on this level.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[1]]
......
......@@ -78,7 +78,7 @@ for pass_id in range(PASS_NUM):
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
print avg_loss_value[0]
print(avg_loss_value[0])
if math.isnan(float(avg_loss_value)):
sys.exit("got NaN loss, training failed.")
exit(1)
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import paddle
......
......@@ -118,7 +118,7 @@ def main():
feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0
for pass_id in xrange(10):
for pass_id in range(10):
for data in train_data():
outs = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
......
......@@ -137,7 +137,7 @@ def main():
generated_img = exe.run(g_program,
feed={'noise': n},
fetch_list={g_img})[0]
real_data = numpy.array(map(lambda x: x[0], data)).astype('float32')
real_data = numpy.array([x[0] for x in data]).astype('float32')
real_data = real_data.reshape(num_true, 784)
total_data = numpy.concatenate([real_data, generated_img])
total_label = numpy.concatenate([
......@@ -150,7 +150,7 @@ def main():
feed={'img': total_data,
'label': total_label},
fetch_list={d_loss})[0]
for _ in xrange(NUM_TRAIN_TIMES_OF_DG):
for _ in range(NUM_TRAIN_TIMES_OF_DG):
n = numpy.random.uniform(
low=-1.0, high=1.0,
size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape(
......
......@@ -36,7 +36,7 @@ if len(sys.argv) == 1:
else:
word_dict = load_vocab(sys.argv[1])
word_dict["<unk>"] = len(word_dict)
print "Dict dim = ", len(word_dict)
print("Dict dim = ", len(word_dict))
# input text data
data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1)
......
......@@ -194,7 +194,7 @@ class TestRoutineOp(unittest.TestCase):
quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
with fluid.Go():
for i in xrange(10):
for i in range(10):
fluid.channel_recv(ch1, result)
Print(result)
......
......@@ -155,7 +155,7 @@ def train_main(use_cuda):
]
feeder = fluid.DataFeeder(feed_list, place)
for pass_id in xrange(1):
for pass_id in range(1):
for batch_id, data in enumerate(train_reader()):
outs = exe.run(main_program,
feed=feeder.feed(data),
......@@ -204,8 +204,8 @@ def decode_main(use_cuda):
]
feeder = fluid.DataFeeder(feed_list, place)
data = train_reader().next()
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
data = next(train_reader())
feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
......@@ -214,7 +214,7 @@ def decode_main(use_cuda):
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
print result_ids.lod()
print(result_ids.lod())
class TestBeamSearchDecoder(unittest.TestCase):
......
......@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
......
......@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
......
......@@ -76,15 +76,15 @@ class TestMNISTIfElseOp(unittest.TestCase):
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
x_data = np.array([x[0] for x in data]).astype("float32")
y_data = np.array([x[1] for x in data]).astype("int64")
y_data = np.expand_dims(y_data, axis=1)
outs = exe.run(prog,
feed={'x': x_data,
'y': y_data},
fetch_list=[avg_loss])
print outs[0]
print(outs[0])
if outs[0] < 1.0:
return
self.assertFalse(True)
......@@ -131,15 +131,15 @@ class TestMNISTIfElseOp(unittest.TestCase):
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
x_data = np.array([x[0] for x in data]).astype("float32")
y_data = np.array([x[1] for x in data]).astype("int64")
y_data = y_data.reshape((y_data.shape[0], 1))
outs = exe.run(prog,
feed={'x': x_data,
'y': y_data},
fetch_list=[avg_loss])
print outs[0]
print(outs[0])
if outs[0] < 1.0:
return
self.assertFalse(True)
......
......@@ -16,6 +16,7 @@ import numpy as np
import unittest
import time
import itertools
import six
import paddle.fluid as fluid
import paddle.fluid.core as core
......@@ -40,8 +41,8 @@ class BenchmarkSuite(OpTest):
expect_t = np.array(item_cpu_out)
actual = item_gpu_out
actual_t = np.array(item_gpu_out)
var_name = variable if isinstance(variable,
basestring) else variable.name
var_name = variable if isinstance(
variable, six.string_types) else variable.name
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol),
......@@ -53,7 +54,7 @@ class BenchmarkSuite(OpTest):
def _get_input_names(self):
inputs = []
for name, value in self.inputs.iteritems():
for name, value in list(self.inputs.items()):
if isinstance(value, list):
inputs.extend([sub_name for sub_name, _ in value])
inputs.append(name)
......@@ -61,7 +62,7 @@ class BenchmarkSuite(OpTest):
def _get_output_names(self):
outputs = []
for var_name, var in self.outputs.iteritems():
for var_name, var in list(self.outputs.items()):
if isinstance(var, list):
for sub_var_name, sub_var in var:
outputs.append(sub_var_name)
......
......@@ -14,6 +14,7 @@
import numpy as np
import argparse
import six
import time
import math
......@@ -299,7 +300,7 @@ class DistSeResneXt2x2:
True, loss_name=avg_cost.name, exec_strategy=strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
......@@ -311,7 +312,7 @@ class DistSeResneXt2x2:
feed=feeder.feed(data))
print(first_loss)
for i in xrange(5):
for i in six.moves.xrange(5):
data = next(reader_generator)
loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
......
......@@ -26,13 +26,15 @@ from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from functools import reduce
from six.moves import zip
def randomize_probability(batch_size, class_num, dtype='float32'):
prob = np.random.uniform(
0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
prob_sum = prob.sum(axis=1)
for i in xrange(len(prob)):
for i in range(len(prob)):
prob[i] /= prob_sum[i]
return prob
......@@ -101,7 +103,7 @@ def get_numeric_gradient(place,
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
for i in range(tensor_size):
if in_place:
set_input(scope, op, inputs, place)
......@@ -159,7 +161,7 @@ class OpTest(unittest.TestCase):
assert isinstance(
numpy_dict,
dict), "self.inputs, self.outputs must be numpy_dict"
for var_name, var_value in numpy_dict.iteritems():
for var_name, var_value in numpy_dict.items():
if isinstance(var_value, (np.ndarray, np.generic)):
self.try_call_once(var_value.dtype)
elif isinstance(var_value, (list, tuple)):
......@@ -223,7 +225,7 @@ class OpTest(unittest.TestCase):
def _get_io_vars(self, block, numpy_inputs):
inputs = {}
for name, value in numpy_inputs.iteritems():
for name, value in numpy_inputs.items():
if isinstance(value, list):
var_list = [
block.var(sub_name) for sub_name, sub_value in value
......@@ -266,7 +268,7 @@ class OpTest(unittest.TestCase):
# if the fetch_list is customized by user, we use it directly.
# if not, fill the fetch_list by the user configured outputs in test.
if len(fetch_list) == 0:
for var_name, var in outputs.iteritems():
for var_name, var in outputs.items():
if isinstance(var, list):
for v in var:
fetch_list.append(v)
......@@ -278,7 +280,7 @@ class OpTest(unittest.TestCase):
fetch_list.append(str(out_name))
# fetch_list = map(block.var, fetch_list)
if not isinstance(fetch_list[0], fluid.framework.Variable):
fetch_list = map(block.var, fetch_list)
fetch_list = list(map(block.var, fetch_list))
outs = executor.run(program,
feed=feed_map,
fetch_list=fetch_list,
......@@ -369,7 +371,7 @@ class OpTest(unittest.TestCase):
def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
for a, b, name in zip(numeric_grads, analytic_grads, names):
abs_a = np.abs(a)
abs_a[abs_a < 1e-3] = 1
......@@ -510,6 +512,6 @@ class OpTest(unittest.TestCase):
use_cuda=use_cuda, loss_name=loss.name, main_program=prog)
else:
executor = Executor(place)
return map(np.array,
executor.run(prog, feed_dict, fetch_list,
return_numpy=False))
return list(
map(np.array,
executor.run(prog, feed_dict, fetch_list, return_numpy=False)))
......@@ -91,7 +91,7 @@ class TestParallelExecutorBase(unittest.TestCase):
first_loss, = run_executor(
exe=exe, feed=feed_dict, fetch_list=[loss.name])
for i in xrange(iter):
for i in range(iter):
run_executor(exe=exe, feed=feed_dict, fetch_list=[])
last_loss, = run_executor(
......@@ -99,8 +99,8 @@ class TestParallelExecutorBase(unittest.TestCase):
end = time.time()
if batch_size is not None:
print "%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin))
print("%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin)))
avg_last_loss_val = np.array(last_loss).mean()
avg_first_loss_val = np.array(first_loss).mean()
......@@ -108,6 +108,6 @@ class TestParallelExecutorBase(unittest.TestCase):
float(avg_first_loss_val)):
sys.exit("got NaN loss, training failed.")
print first_loss, last_loss
print(first_loss, last_loss)
# self.assertGreater(first_loss[0], last_loss[0])
return first_loss, last_loss
......@@ -26,7 +26,7 @@ class TestAccuracyOp(OpTest):
label = np.random.randint(0, 2, (n, 1))
self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
num_correct = 0
for rowid in xrange(n):
for rowid in range(n):
for ele in indices[rowid]:
if ele == label[rowid]:
num_correct += 1
......
......@@ -273,7 +273,7 @@ class TestSparseAdamOp(unittest.TestCase):
self.setup(scope, place)
op_args = dict()
for key, np_array in self.dense_inputs.iteritems():
for key, np_array in self.dense_inputs.items():
var = scope.var(key).get_tensor()
var.set(np_array, place)
op_args[key] = key
......@@ -290,7 +290,7 @@ class TestSparseAdamOp(unittest.TestCase):
adam_op = Operator("adam", **op_args)
adam_op.run(scope, place)
for key, np_array in self.outputs.iteritems():
for key, np_array in self.outputs.items():
out_var = scope.var(key).get_tensor()
actual = np.array(out_var)
actual = actual.reshape([actual.size])
......
......@@ -80,8 +80,9 @@ class TestArrayReadWrite(unittest.TestCase):
append_backward(total_sum_scaled)
g_vars = map(default_main_program().global_block().var,
[each_x.name + "@GRAD" for each_x in x])
g_vars = list(
map(default_main_program().global_block().var,
[each_x.name + "@GRAD" for each_x in x]))
g_out = [
item.sum()
for item in exe.run(
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册