提交 3eef539a 编写于 作者: H Helin Wang

add word2vec test for the new API

上级 7cfd4e4e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import numpy as np
import math
import sys
from functools import partial
PASS_NUM = 100
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5
BATCH_SIZE = 32
def create_random_lodtensor(lod, place, low, high):
# The range of data elements is [low, high]
data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod([lod])
return res
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
def inference_network(is_sparse):
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
embed_first = fluid.layers.embedding(
input=first_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=is_sparse,
param_attr='shared_w')
embed_second = fluid.layers.embedding(
input=second_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=is_sparse,
param_attr='shared_w')
embed_third = fluid.layers.embedding(
input=third_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=is_sparse,
param_attr='shared_w')
embed_forth = fluid.layers.embedding(
input=forth_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=is_sparse,
param_attr='shared_w')
concat_embed = fluid.layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
hidden1 = fluid.layers.fc(input=concat_embed,
size=HIDDEN_SIZE,
act='sigmoid')
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
return predict_word
def train_network():
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
predict_word = inference_network()
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = fluid.layers.mean(cost)
return avg_cost
def train(use_cuda, is_sparse, save_path):
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
def event_handler(event):
if isinstance(event, fluid.EndPass):
avg_cost = trainer.test(reader=paddle.dataset.imikolov.test(
word_dict, N))
if avg_cost < 5.0:
trainer.params.save(save_path)
return
if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.")
trainer = fluid.Trainer(
partial(inference_network, is_sparse),
optimizer=fluid.optimizer.SGD(learning_rate=0.001),
place=place,
event_handler=event_handler)
trainer.train(train_reader, 100)
def infer(use_cuda, save_path):
params = fluid.Params(save_path)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(inference_network, params, place=place)
lod = [0, 1]
first_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
second_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
third_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
fourth_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
result = inferencer.infer({
'firstw': first_word,
'secondw': second_word,
'thirdw': third_word,
'forthw': fourth_word
})
print(result)
def main(use_cuda, is_sparse):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
save_path = "word2vec.inference.model"
train(use_cuda, is_sparse, save_path)
infer(use_cuda, save_path)
if __name__ == '__main__':
for use_cuda in (False, True):
for is_sparse in (False, True):
main(use_cuda=use_cuda, is_sparse=is_sparse)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册