Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3eb42bfd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3eb42bfd
编写于
10月 30, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move test_CompareMKLDNNandCPU to test_MKLDNN and remove unused code
上级
56f6e231
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
197 addition
and
251 deletion
+197
-251
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+13
-9
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+5
-5
paddle/gserver/tests/mkldnn_branch_net.conf
paddle/gserver/tests/mkldnn_branch_net.conf
+142
-0
paddle/gserver/tests/mkldnn_branches_fc.conf
paddle/gserver/tests/mkldnn_branches_fc.conf
+0
-58
paddle/gserver/tests/mkldnn_branches_pool.conf
paddle/gserver/tests/mkldnn_branches_pool.conf
+0
-60
paddle/gserver/tests/mkldnn_simple_net.conf
paddle/gserver/tests/mkldnn_simple_net.conf
+28
-20
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+4
-4
paddle/math/MKLDNNMatrix.h
paddle/math/MKLDNNMatrix.h
+5
-0
paddle/trainer/tests/CMakeLists.txt
paddle/trainer/tests/CMakeLists.txt
+0
-16
paddle/trainer/tests/sample_trainer_config_simple_net.conf
paddle/trainer/tests/sample_trainer_config_simple_net.conf
+0
-68
paddle/trainer/tests/test_CompareTwoNets.cpp
paddle/trainer/tests/test_CompareTwoNets.cpp
+0
-11
未找到文件。
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
3eb42bfd
...
...
@@ -521,12 +521,16 @@ void MKLDNNTester::getOutResult(const std::string& configPath,
gradientMachine
->
forward
(
in
.
inArgs
[
i
],
&
outArgs
,
PASS_TRAIN
);
// save forward result
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
MatrixPtr
value
=
Matrix
::
create
(
outArgs
[
k
].
value
->
getHeight
(),
outArgs
[
k
].
value
->
getWidth
(),
false
,
false
);
value
->
copyFrom
(
*
outArgs
[
k
].
value
);
out
.
outValues
.
push_back
(
value
);
const
MatrixPtr
&
src
=
outArgs
[
k
].
value
;
MatrixPtr
dst
=
Matrix
::
create
(
src
->
getHeight
(),
src
->
getWidth
(),
false
,
false
);
if
(
typeid
(
*
src
)
==
typeid
(
MKLDNNMatrix
))
{
MKLDNNMatrixPtr
dnnSrc
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
src
);
dnnSrc
->
copyTo
(
*
dst
);
}
else
{
dst
->
copyFrom
(
*
src
);
}
out
.
outValues
.
push_back
(
dst
);
}
// random backward input
...
...
@@ -559,9 +563,9 @@ void MKLDNNTester::compareResult(DataOut& ref, DataOut& dnn, float eps) {
}
}
void
MKLDNNTester
::
run
Branches
Test
(
const
std
::
string
&
configPath
,
size_t
iter
,
float
eps
)
{
void
MKLDNNTester
::
run
Net
Test
(
const
std
::
string
&
configPath
,
size_t
iter
,
float
eps
)
{
DataIn
in
;
initArgument
(
in
,
configPath
,
iter
);
DataOut
outCpu
,
outDnn
;
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
3eb42bfd
...
...
@@ -85,17 +85,17 @@ public:
bool
printDetails
=
false
,
size_t
iter
=
3
,
float
epsilon
=
1e-4
);
static
void
run
Branches
Test
(
const
std
::
string
&
configPath
,
size_t
iter
=
3
,
float
eps
=
1e-4
);
static
void
run
Net
Test
(
const
std
::
string
&
configPath
,
size_t
iter
=
2
,
float
eps
=
1e-4
);
static
void
initArgument
(
DataIn
&
data
,
const
std
::
string
&
configPath
,
size_t
iter
=
3
);
size_t
iter
=
2
);
static
void
getOutResult
(
const
std
::
string
&
configPath
,
DataIn
&
in
,
DataOut
&
out
,
bool
use_mkldnn
,
size_t
iter
=
3
);
size_t
iter
=
2
);
private:
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
...
...
paddle/
trainer/tests/sample_trainer_config
_branch_net.conf
→
paddle/
gserver/tests/mkldnn
_branch_net.conf
浏览文件 @
3eb42bfd
...
...
@@ -14,36 +14,82 @@
from
paddle
.
trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
128
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_conv
(
input
,
group_name
):
out1
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv1_'
,
filter_size
=
1
,
num_filters
=
channels
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
out2
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv2_'
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
return
out1
,
out2
def
two_conv_bn
(
input
,
group_name
):
out1
,
out2
=
two_conv
(
input
,
group_name
)
out1
=
batch_norm_layer
(
input
=
out1
,
name
=
group_name
+
'_bn1_'
,
use_global_stats
=
False
,
act
=
ReluActivation
())
out2
=
batch_norm_layer
(
input
=
out2
,
name
=
group_name
+
'_bn2_'
,
use_global_stats
=
False
,
act
=
ReluActivation
())
return
out1
,
out2
def
two_conv_pool
(
input
,
group_name
):
out1
,
out2
=
two_conv
(
input
,
group_name
)
out1
=
img_pool_layer
(
input
=
out1
,
name
=
group_name
+
'_pool1_'
,
pool_size
=
3
,
stride
=
2
,
padding
=
0
,
pool_type
=
MaxPooling
())
out2
=
img_pool_layer
(
input
=
out2
,
name
=
group_name
+
'_pool2_'
,
pool_size
=
5
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
return
out1
,
out2
def
two_fc
(
input
,
group_name
):
out1
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc1_'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
tmp
=
img_conv_layer
(
input
=
data
,
num_channels
=
1
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
out2
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc2_'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
return
out1
,
out2
a1
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
1
,
num_filters
=
32
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
a2
=
img_conv_layer
(
input
=
tmp
,
tmp
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
32
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
a1
,
a2
=
two_conv
(
tmp
,
'conv_branch'
)
tmp
=
addto_layer
(
input
=[
a1
,
a2
],
act
=
ReluActivation
(),
bias_attr
=
False
)
...
...
@@ -54,36 +100,11 @@ tmp = img_pool_layer(input=tmp,
padding
=
1
,
pool_type
=
AvgPooling
())
b1
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
b1
=
img_pool_layer
(
input
=
b1
,
pool_size
=
3
,
stride
=
2
,
padding
=
0
,
pool_type
=
MaxPooling
())
b2
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
64
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
b2
=
img_pool_layer
(
input
=
b2
,
pool_size
=
5
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
b1
,
b2
=
two_conv_pool
(
tmp
,
'pool_branch'
)
tmp
=
concat_layer
(
input
=[
b1
,
b2
])
tmp
=
img_pool_layer
(
input
=
tmp
,
num_channels
=
96
,
num_channels
=
channels
*
2
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
...
...
@@ -91,8 +112,9 @@ tmp = img_pool_layer(input=tmp,
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
num_filters
=
channels
,
padding
=
1
,
stride
=
2
,
shared_biases
=
True
,
act
=
LinearActivation
(),
bias_attr
=
False
)
...
...
@@ -101,33 +123,20 @@ tmp = batch_norm_layer(input=tmp,
use_global_stats
=
False
,
act
=
ReluActivation
())
c1
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
1
,
num_filters
=
32
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
c2
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
c1
,
c2
=
two_conv_bn
(
tmp
,
'bn_branch'
)
tmp
=
addto_layer
(
input
=[
c1
,
c2
],
act
=
ReluActivation
(),
bias_attr
=
False
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
64
,
bias_attr
=
Fals
e
,
act
=
Tanh
Activation
())
tmp
=
fc_layer
(
input
=
tmp
,
size
=
channels
,
bias_attr
=
Tru
e
,
act
=
Relu
Activation
())
output
=
fc_layer
(
input
=
tmp
,
size
=
10
,
d1
,
d2
=
two_fc
(
tmp
,
'fc_branch'
)
tmp
=
addto_layer
(
input
=[
d1
,
d2
])
out
=
fc_layer
(
input
=
tmp
,
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
lbl
=
data_layer
(
name
=
"label"
,
size
=
10
)
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
outputs
(
out
)
paddle/gserver/tests/mkldnn_branches_fc.conf
已删除
100644 → 0
浏览文件 @
56f6e231
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_fc
(
input
,
group_name
):
out1
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc1'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
out2
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc2'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
())
pool
=
img_pool_layer
(
input
=
conv
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
AvgPooling
())
a1
,
a2
=
two_fc
(
input
=
pool
,
group_name
=
'a'
)
concat
=
concat_layer
(
input
=[
a1
,
a2
])
b1
,
b2
=
two_fc
(
input
=
pool
,
group_name
=
'b'
)
addto
=
addto_layer
(
input
=[
b1
,
b2
])
outputs
([
concat
,
addto
])
paddle/gserver/tests/mkldnn_branches_pool.conf
已删除
100644 → 0
浏览文件 @
56f6e231
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_pool
(
input
,
group_name
):
out1
=
img_pool_layer
(
input
=
input
,
name
=
group_name
+
'_pool1'
,
pool_size
=
3
,
stride
=
2
,
padding
=
0
,
pool_type
=
MaxPooling
())
out2
=
img_pool_layer
(
input
=
input
,
name
=
group_name
+
'_pool2'
,
pool_size
=
5
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
())
pool
=
img_pool_layer
(
input
=
conv
,
pool_size
=
3
,
stride
=
1
,
padding
=
1
,
pool_type
=
AvgPooling
())
a1
,
a2
=
two_pool
(
input
=
pool
,
group_name
=
'a'
)
concat
=
concat_layer
(
input
=[
a1
,
a2
])
b1
,
b2
=
two_pool
(
input
=
pool
,
group_name
=
'b'
)
addto
=
addto_layer
(
input
=[
b1
,
b2
])
outputs
([
concat
,
addto
])
paddle/gserver/tests/mkldnn_
branches_conv
.conf
→
paddle/gserver/tests/mkldnn_
simple_net
.conf
浏览文件 @
3eb42bfd
...
...
@@ -17,40 +17,48 @@ from paddle.trainer_config_helpers import *
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_conv
(
input
,
group_name
):
out1
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv1'
,
filter_size
=
1
,
num_filters
=
channels
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
out2
=
img_conv_layer
(
input
=
input
,
n
ame
=
group_name
+
'_conv2'
,
tmp
=
img_conv_layer
(
input
=
data
,
n
um_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
1
,
padding
=
0
,
pool_type
=
AvgPooling
())
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
LinearActivation
(),
bias_attr
=
False
)
a1
,
a2
=
two_conv
(
input
=
conv
,
group_name
=
'a'
)
tmp
=
batch_norm_layer
(
input
=
tmp
,
use_global_stats
=
False
,
act
=
ReluActivation
())
concat
=
concat_layer
(
input
=[
a1
,
a2
])
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
b1
,
b2
=
two_conv
(
input
=
conv
,
group_name
=
'b'
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
channels
,
bias_attr
=
False
,
act
=
ReluActivation
())
addto
=
addto_layer
(
input
=[
b1
,
b2
])
out
=
fc_layer
(
input
=
tmp
,
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
outputs
(
[
concat
,
addto
]
)
outputs
(
out
)
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
3eb42bfd
...
...
@@ -308,15 +308,15 @@ TEST(MKLDNNActivation, Activations) {
}
DECLARE_string
(
config_args
);
TEST
(
MKLDNN
Layer
,
branches
)
{
std
::
vector
<
std
::
string
>
cases
=
{
"
conv"
,
"pool"
,
"fc
"
};
TEST
(
MKLDNN
Net
,
net
)
{
std
::
vector
<
std
::
string
>
cases
=
{
"
simple"
,
"branch
"
};
for
(
auto
name
:
cases
)
{
std
::
string
config
=
"./gserver/tests/mkldnn_
branches_"
+
name
+
"
.conf"
;
std
::
string
config
=
"./gserver/tests/mkldnn_
"
+
name
+
"_net
.conf"
;
for
(
auto
channels
:
{
2
,
32
})
{
std
::
ostringstream
oss
;
oss
<<
"channels="
<<
channels
;
FLAGS_config_args
=
oss
.
str
();
MKLDNNTester
::
run
Branches
Test
(
config
);
MKLDNNTester
::
run
Net
Test
(
config
);
}
}
}
...
...
paddle/math/MKLDNNMatrix.h
浏览文件 @
3eb42bfd
...
...
@@ -102,6 +102,11 @@ public:
m_
->
copyFrom
(
src
);
}
void
copyTo
(
Matrix
&
dst
)
{
// TODO(TJ): reorder data if this format is not nchw or x
dst
.
copyFrom
(
*
m_
);
}
public:
/**
* Reorder this MKLDNNMatrix from other format.
...
...
paddle/trainer/tests/CMakeLists.txt
浏览文件 @
3eb42bfd
...
...
@@ -37,22 +37,6 @@ add_test(NAME test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
################ test_CompareMKLDNNandCPU ######################
if
(
WITH_MKLDNN
)
macro
(
gen_command VAR_NAME CONFIG_FILE
)
set
(
${
VAR_NAME
}
"
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh"
"-d"
"
${
PADDLE_SOURCE_DIR
}
/python/"
"
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareMKLDNNandCPU --use_gpu=False"
"--config_file_a=trainer/tests/
${
CONFIG_FILE
}
--use_mkldnn_a=True"
"--config_file_b=trainer/tests/
${
CONFIG_FILE
}
--use_mkldnn_b=False"
"WORKING_DIRECTORY"
"
${
PADDLE_SOURCE_DIR
}
/paddle/"
)
endmacro
()
add_unittest_without_exec
(
test_CompareMKLDNNandCPU test_CompareTwoNets.cpp
)
gen_command
(
compare_simple_net
"sample_trainer_config_simple_net.conf"
)
gen_command
(
compare_branch_net
"sample_trainer_config_branch_net.conf"
)
add_test
(
NAME test_CompareMKLDNNandCPU_simple_net COMMAND
${
compare_simple_net
}
)
add_test
(
NAME test_CompareMKLDNNandCPU_branch_net COMMAND
${
compare_branch_net
}
)
endif
()
############### test_CompareTwoOpts ###################
add_unittest_without_exec
(
test_CompareTwoOpts
test_CompareTwoOpts.cpp
)
...
...
paddle/trainer/tests/sample_trainer_config_simple_net.conf
已删除
100644 → 0
浏览文件 @
56f6e231
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
128
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
tmp
=
img_conv_layer
(
input
=
data
,
num_channels
=
1
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
AvgPooling
())
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
(),
bias_attr
=
False
)
tmp
=
batch_norm_layer
(
input
=
tmp
,
use_global_stats
=
False
,
act
=
ReluActivation
())
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
tmp
=
fc_layer
(
input
=
tmp
,
size
=
64
,
bias_attr
=
True
,
act
=
ReluActivation
())
output
=
fc_layer
(
input
=
tmp
,
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
lbl
=
data_layer
(
name
=
"label"
,
size
=
10
)
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
paddle/trainer/tests/test_CompareTwoNets.cpp
浏览文件 @
3eb42bfd
...
...
@@ -26,15 +26,12 @@ DECLARE_int32(gpu_id);
DECLARE_bool
(
local
);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_string
(
config
);
DECLARE_string
(
nics
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_bool
(
use_mkldnn_a
,
false
,
"whether to use mkldnn to run config_file_a"
);
DEFINE_bool
(
use_mkldnn_b
,
false
,
"whether to use mkldnn to run config_file_b"
);
DEFINE_bool
(
need_high_accuracy
,
false
,
"whether need to run in double accuracy"
);
...
...
@@ -131,12 +128,6 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
matA
.
getWidth
());
}
if
(
FLAGS_use_mkldnn_a
||
FLAGS_use_mkldnn_b
)
{
// some format of mkldnn parameter is different with cpu
// test_MKLDNN will check the parameters
return
;
}
vector
<
ParameterPtr
>&
parametersA
=
comDataA
.
parameters
;
vector
<
ParameterPtr
>&
parametersB
=
comDataB
.
parameters
;
...
...
@@ -176,12 +167,10 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
TEST
(
Trainer
,
create
)
{
ComData
dataA
;
FLAGS_use_mkldnn
=
FLAGS_use_mkldnn_a
;
calcGradient
(
dataA
,
FLAGS_config_file_a
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of Network A is finished
\n\n
"
;
ComData
dataB
;
FLAGS_use_mkldnn
=
FLAGS_use_mkldnn_b
;
calcGradient
(
dataB
,
FLAGS_config_file_b
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of the Network B is finished
\n\n
"
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录