Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3eadb42d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3eadb42d
编写于
9月 06, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix eigen error.
上级
2db7dede
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
101 addition
and
44 deletion
+101
-44
paddle/operators/pad_op.cc
paddle/operators/pad_op.cc
+6
-6
paddle/operators/pad_op.h
paddle/operators/pad_op.h
+85
-35
python/paddle/v2/framework/tests/test_pad_op.py
python/paddle/v2/framework/tests/test_pad_op.py
+10
-3
未找到文件。
paddle/operators/pad_op.cc
浏览文件 @
3eadb42d
...
@@ -26,18 +26,18 @@ class PadOp : public framework::OperatorWithKernel {
...
@@ -26,18 +26,18 @@ class PadOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dim0
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dim1
=
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
dims
(
);
auto
paddings
=
GetAttr
<
std
::
vector
<
std
::
pair
<
int
,
int
>>>
(
"paddings"
);
auto
paddings
=
GetAttr
<
std
::
vector
<
std
::
pair
<
int32
,
int32
>>>
(
"paddings"
);
std
::
vector
<
int
>
dim1
(
dim0
.
size
()
);
for
(
int
i
=
0
;
i
<
dim0
.
size
();
++
i
)
{
for
(
int
i
=
0
;
i
<
dim0
.
size
();
++
i
)
{
dim1
[
i
]
=
dim0
[
i
]
+
paddings
[
i
]
[
0
]
+
paddings
[
i
][
1
]
;
dim1
[
i
]
=
dim0
[
i
]
+
paddings
[
i
]
.
first
+
paddings
[
i
].
second
;
}
}
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
dim1
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
paddle
::
framework
::
make_ddim
(
dim1
)
);
}
}
};
};
class
Mul
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
Pad
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
Mul
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
Pad
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of pad op"
);
AddInput
(
"X"
,
"The input of pad op"
);
AddOutput
(
"Out"
,
"The output of pad op"
);
AddOutput
(
"Out"
,
"The output of pad op"
);
...
...
paddle/operators/pad_op.h
浏览文件 @
3eadb42d
...
@@ -28,52 +28,102 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
...
@@ -28,52 +28,102 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
,
size_t
D
>
void
PadFunction
(
const
framework
::
ExecutionContext
&
context
)
{
auto
pads
=
context
.
op_
.
GetAttr
<
std
::
vector
<
std
::
pair
<
int
,
int
>>>
(
"paddings"
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
int
i
=
0
;
i
<
pads
.
size
();
++
i
)
{
paddings
[
i
]
=
pads
[
i
];
}
T
pad_value
=
context
.
op_
.
GetAttr
<
T
>
(
"pad_value"
);
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
X
->
dims
();
auto
X_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
X
);
auto
Out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
Out
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Out_tensor
.
device
(
place
)
=
X_tensor
.
pad
(
paddings
,
pad_value
);
}
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
PadKernel
:
public
framework
::
OpKernel
{
class
PadKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
paddings
=
int
dim
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
context
.
op_
.
GetAttr
<
std
::
vector
<
std
::
pair
<
int
,
int
>>>
(
"paddings"
);
switch
(
dim
)
{
T
pad_value
=
context
.
op_
.
GetAttr
<
T
>
(
"pad_value"
);
case
1
:
PadFunction
<
Place
,
T
,
1
>
(
context
);
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
break
;
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out"
);
case
2
:
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
PadFunction
<
Place
,
T
,
2
>
(
context
);
auto
dims
=
X
->
dims
();
break
;
case
3
:
// Eigen::TensorMap<Eigen::Tensor<const T, 2, Eigen::RowMajor,
PadFunction
<
Place
,
T
,
3
>
(
context
);
// Eigen::DenseIndex>> X_tensor = EigenTensor<T, 2>::From(*X);
break
;
// Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
case
4
:
// Out_tensor = EigenTensor<T, 2>::From(*Out);
PadFunction
<
Place
,
T
,
4
>
(
context
);
EigenTensor
<
T
,
dims
.
size
()
>::
ConstType
X_tensor
=
break
;
EigenTensor
<
T
,
dims
.
size
()
>::
From
(
*
X
);
case
5
:
EigenTensor
<
T
,
dims
.
size
()
>::
Type
Out_tensor
=
PadFunction
<
Place
,
T
,
5
>
(
context
);
EigenTensor
<
T
,
dims
.
size
()
>::
From
(
*
Out
);
break
;
Out_tensor
=
X_tensor
.
pad
(
paddings
,
pad_value
);
case
6
:
PadFunction
<
Place
,
T
,
6
>
(
context
);
break
;
default:
LOG
(
ERROR
)
<<
"Only ranks up to 6 supported."
;
}
}
}
};
};
template
<
typename
Place
,
typename
T
,
size_t
D
>
void
PadGradFunction
(
const
framework
::
ExecutionContext
&
context
)
{
auto
pads
=
context
.
op_
.
GetAttr
<
std
::
vector
<
std
::
pair
<
int
,
int
>>>
(
"paddings"
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
int
i
=
0
;
i
<
pads
.
size
();
++
i
)
{
paddings
[
0
].
first
=
-
paddings
[
0
].
first
;
paddings
[
1
].
second
=
-
paddings
[
1
].
second
;
}
auto
*
dOut
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dX_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
dX
);
auto
dOut_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
dOut
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
dX_tensor
.
device
(
place
)
=
dOut_tensor
.
pad
(
paddings
,
0
);
}
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
PadGradKernel
:
public
framework
::
OpKernel
{
class
PadGradKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
std
::
vector
<
std
::
pair
<
int
,
int
>>
paddings
=
size_t
dim
=
context
.
op_
.
GetAttr
<
std
::
vector
<
std
::
pair
<
int
,
int
>>>
(
"paddings"
);
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
().
size
();
for
(
int
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
switch
(
dim
)
{
paddings
[
0
].
first
=
-
paddings
[
0
].
first
;
case
1
:
paddings
[
1
].
second
=
-
paddings
[
1
].
second
;
PadGradFunction
<
Place
,
T
,
1
>
(
context
);
break
;
case
2
:
PadGradFunction
<
Place
,
T
,
2
>
(
context
);
break
;
case
3
:
PadGradFunction
<
Place
,
T
,
3
>
(
context
);
break
;
case
4
:
PadGradFunction
<
Place
,
T
,
4
>
(
context
);
break
;
case
5
:
PadGradFunction
<
Place
,
T
,
5
>
(
context
);
break
;
case
6
:
PadGradFunction
<
Place
,
T
,
6
>
(
context
);
break
;
default:
LOG
(
ERROR
)
<<
"Only ranks up to 6 supported."
;
}
}
auto
*
dOut
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
dims
=
dOut
->
dims
();
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
EigenTensor
<
T
,
dims
.
size
()
>::
Type
dX_tensor
=
EigenTensor
<
T
,
dims
.
size
()
>::
From
(
*
dX
);
EigenTensor
<
T
,
dims
.
size
()
>::
ConstType
dOut_tensor
=
EigenTensor
<
T
,
dims
.
size
()
>::
From
(
*
dOut
);
dX_tensor
=
dOut_tensor
.
pad
(
paddings
,
0
);
}
}
};
};
...
...
python/paddle/v2/framework/tests/test_pad_op.py
浏览文件 @
3eadb42d
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
,
create_op
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
op_test_util
import
OpTestMeta
...
@@ -10,19 +11,25 @@ class TestPadOp(unittest.TestCase):
...
@@ -10,19 +11,25 @@ class TestPadOp(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
type
=
"pad"
self
.
type
=
"pad"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
16
,
16
)).
astype
(
"float32"
),
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
16
,
16
)).
astype
(
"float32"
),
}
self
.
attrs
[
'paddings'
]
=
((
0
,
1
),
(
2
,
3
))
self
.
attrs
=
{}
self
.
attrs
[
'paddings'
]
=
[(
0
,
1
),
(
2
,
3
)]
self
.
attrs
[
'pad_value'
]
=
0
self
.
attrs
[
'pad_value'
]
=
0
self
.
outputs
=
{
self
.
outputs
=
{
'Out'
:
np
.
pad
(
self
.
inputs
[
'X'
],
'Out'
:
np
.
pad
(
self
.
inputs
[
'X'
],
self
.
attrs
[
'paddings'
],
self
.
attrs
[
'paddings'
],
mode
=
'constant'
,
mode
=
'constant'
,
constant_value
=
0
)
constant_value
s
=
0
)
}
}
class
PadGradOpTest
(
GradientChecker
):
class
PadGradOpTest
(
GradientChecker
):
def
test_pad
(
self
):
def
test_pad
(
self
):
op
=
Operator
(
"pad"
,
paddings
=
((
0
,
1
),
(
2
,
3
)),
pad_value
=
0
)
op
=
Operator
(
type
=
"pad"
,
X
=
"X"
,
Out
=
"Out"
,
paddings
=
[(
0
,
1
),
(
2
,
3
)],
pad_value
=
0
)
inputs
=
{
'X'
:
np
.
random
.
random
((
16
,
16
)).
astype
(
"float32"
),
}
inputs
=
{
'X'
:
np
.
random
.
random
((
16
,
16
)).
astype
(
"float32"
),
}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
,
max_relative_error
=
0.5
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
,
max_relative_error
=
0.5
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录