提交 3e13b912 编写于 作者: C caoying03

add softmax_with_cost_op.

上级 843a8b1e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
:A
limitations under the License. */
#include "paddle/operators/softmax_op.h"
namespace paddle {
namespace operators {
class SoftmaxWithLossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto logits = ctx.Input<Tensor>("logits");
PADDLE_ENFORCE(logits->dims().size() == 2UL,
"The input of softmax_with_loss_op should be a 2-d tensor.");
PADDLE_ENFORCE(ctx.Input<Tensor>("lables")->dims().size() == 1UL,
"The label should be a 1-d tensor.");
ctx.Output<Tensor>("loss")->Resize({logits->dims()[0]});
}
};
class SoftmaxWithLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftmaxWithLossOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("logits",
"The unscaled log probabilities which is a 2-D tensor<float> with"
"shape [N x K]. N is the batch_size, and K is the class number.");
AddInput("label", "The ground truth. A 1-D tensor<int> with shape N.");
AddOutput("loss", "A 1-D tensor<float> with shape N.");
AddComment(R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is then computed. This provides a more
numerically stable gradient.
Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.
This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.
)DOC");
}
};
class SoftmaxWithLossOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(softmax, ops::SoftmaxWithLossOp, ops::SoftmaxWithLossOpMaker,
softmax_grad, ops::SoftmaxWithLossOpGrad);
REGISTER_OP_CPU_KERNEL(
softmax, ops::SoftmaxWithLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
softmax_grad,
ops::SoftmaxWithLossGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class SoftmaxWithLossKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {}
};
template <typename Place, typename T>
class SoftmaxWithLossGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {}
};
} // namespace operators
} // namespace paddle
...@@ -37,6 +37,7 @@ USE_OP(mul); ...@@ -37,6 +37,7 @@ USE_OP(mul);
USE_OP(mean); USE_OP(mean);
USE_OP(sigmoid); USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
USE_OP(softmax_with_loss);
USE_OP(rowwise_add); USE_OP(rowwise_add);
USE_OP(fill_zeros_like); USE_OP(fill_zeros_like);
USE_NO_KERNEL_OP(recurrent); USE_NO_KERNEL_OP(recurrent);
......
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
class TestSoftmaxWithLossOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
pass
class SoftmaxWithLossGradOpTest(GradientChecker):
def test_softmax(self):
pass
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册