Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3db9c8c9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3db9c8c9
编写于
5月 24, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
5月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine shape and split test. test=develop (#17545)
上级
2dc1c6f2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
374 addition
and
316 deletion
+374
-316
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
...n/paddle/fluid/tests/unittests/test_activation_nn_grad.py
+127
-0
python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
.../paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
+247
-0
python/paddle/fluid/tests/unittests/test_nn_grad.py
python/paddle/fluid/tests/unittests/test_nn_grad.py
+0
-316
未找到文件。
python/paddle/fluid/tests/unittests/test_activation_nn_grad.py
0 → 100644
浏览文件 @
3db9c8c9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
from
decorator_helper
import
prog_scope
class
TestReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
relu
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestLeakyReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
alpha
=
0.2
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
leaky_relu
(
x
,
alpha
=
alpha
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestSqrtDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
sqrt
(
x
)
x_arr
=
np
.
random
.
uniform
(
0.1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestSquareDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
square
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_nn_grad.py
0 → 100644
浏览文件 @
3db9c8c9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
import
gradient_checker
from
decorator_helper
import
prog_scope
class
TestElementwiseMulDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseMulBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseDivDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseDivBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[
1
:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
1
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[
1
:
-
1
]).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nn_grad.py
浏览文件 @
3db9c8c9
...
...
@@ -43,80 +43,6 @@ class TestMulGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
2
,
8
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
relu
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestLeakyReluDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
3
,
7
]
eps
=
0.005
alpha
=
0.2
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
leaky_relu
(
x
,
alpha
=
alpha
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
x_arr
[
np
.
abs
(
x_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestSqrtDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
shape
=
[
3
,
7
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
sqrt
(
x
)
x_arr
=
np
.
random
.
uniform
(
0.1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
=
[
fluid
.
CUDAPlace
(
0
)]
for
p
in
places
:
self
.
func
(
p
)
class
TestConvDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
...
...
@@ -141,57 +67,6 @@ class TestConvDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestSquareDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
17
,
23
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
=
layers
.
square
(
x
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
],
y
,
x_init
=
x_arr
,
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseMulDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestReduceMeanWithDimDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
...
...
@@ -215,141 +90,6 @@ class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestElementwiseMulBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_mul
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseAddBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_add
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseSubBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
5
,
7
]
eps
=
0.005
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_sub
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[:
-
1
]).
astype
(
dtype
)
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestMulDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
...
...
@@ -378,61 +118,5 @@ class TestMulDoubleGradCheck(unittest.TestCase):
self
.
func
(
p
)
class
TestElementwiseDivDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
,
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
0
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
class
TestElementwiseDivBroadcastDoubleGradCheck
(
unittest
.
TestCase
):
@
prog_scope
()
def
func
(
self
,
place
):
# the shape of input variable shoule be clearly specified, not inlcude -1.
shape
=
[
2
,
3
,
7
,
9
]
eps
=
0.0001
dtype
=
np
.
float64
x
=
layers
.
data
(
'x'
,
shape
,
False
,
dtype
)
y
=
layers
.
data
(
'y'
,
shape
[
1
:
-
1
],
False
,
dtype
)
x
.
persistable
=
True
y
.
persistable
=
True
out
=
layers
.
elementwise_div
(
x
,
y
,
axis
=
1
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
).
astype
(
dtype
)
y_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
shape
[
1
:
-
1
]).
astype
(
dtype
)
y_arr
[
np
.
abs
(
y_arr
)
<
0.005
]
=
0.02
gradient_checker
.
double_grad_check
(
[
x
,
y
],
out
,
x_init
=
[
x_arr
,
y_arr
],
place
=
place
,
eps
=
eps
,
atol
=
1e-3
)
def
test_grad
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
p
in
places
:
self
.
func
(
p
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录