Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3d1ac72a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3d1ac72a
编写于
2月 08, 2018
作者:
K
kexinzhao
提交者:
GitHub
2月 08, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8176 from kexinzhao/inf_rnn_encode_decode
Add Inference example and unit test for rnn_encoder_decoder
上级
f605d00f
64800cfe
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
250 addition
and
29 deletion
+250
-29
paddle/framework/block_desc.cc
paddle/framework/block_desc.cc
+1
-2
paddle/framework/op_desc.cc
paddle/framework/op_desc.cc
+2
-3
paddle/framework/program_desc.cc
paddle/framework/program_desc.cc
+20
-1
paddle/framework/prune.cc
paddle/framework/prune.cc
+67
-17
paddle/inference/tests/book/CMakeLists.txt
paddle/inference/tests/book/CMakeLists.txt
+1
-0
paddle/inference/tests/book/test_inference_rnn_encoder_decoder.cc
...nference/tests/book/test_inference_rnn_encoder_decoder.cc
+67
-0
python/paddle/v2/fluid/tests/book/test_rnn_encoder_decoder.py
...on/paddle/v2/fluid/tests/book/test_rnn_encoder_decoder.py
+92
-6
未找到文件。
paddle/framework/block_desc.cc
浏览文件 @
3d1ac72a
...
...
@@ -162,9 +162,8 @@ BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc,
:
prog_
(
prog
),
desc_
(
desc
)
{
need_update_
=
true
;
for
(
auto
&
op
:
other
.
ops_
)
{
ops_
.
emplace_back
(
new
OpDesc
(
*
op
,
this
));
ops_
.
emplace_back
(
new
OpDesc
(
*
op
->
Proto
(),
prog
,
this
));
}
for
(
auto
&
it
:
other
.
vars_
)
{
auto
*
var
=
new
VarDesc
(
*
it
.
second
);
vars_
[
it
.
first
].
reset
(
var
);
...
...
paddle/framework/op_desc.cc
浏览文件 @
3d1ac72a
...
...
@@ -125,11 +125,10 @@ OpDesc::OpDesc(const proto::OpDesc &desc, ProgramDesc *prog, BlockDesc *block)
// restore attrs_
for
(
const
proto
::
OpDesc
::
Attr
&
attr
:
desc_
.
attrs
())
{
std
::
string
attr_name
=
attr
.
name
();
// The sub_block referred to by the BLOCK attr hasn't been added
// to ProgramDesc class yet, we skip setting BLOCK attr here.
if
(
attr
.
type
()
!=
proto
::
AttrType
::
BLOCK
)
{
attrs_
[
attr_name
]
=
GetAttrValue
(
attr
);
}
else
{
auto
bid
=
attr
.
block_idx
();
attrs_
[
attr_name
]
=
prog
->
MutableBlock
(
bid
);
}
}
this
->
block_
=
block
;
...
...
paddle/framework/program_desc.cc
浏览文件 @
3d1ac72a
...
...
@@ -43,11 +43,20 @@ ProgramDesc::ProgramDesc() {
ProgramDesc
::
ProgramDesc
(
const
ProgramDesc
&
o
)
{
desc_
=
o
.
desc_
;
for
(
int
i
=
0
;
i
<
desc_
.
blocks_size
();
++
i
)
{
auto
*
block
=
desc_
.
mutable_blocks
(
i
);
blocks_
.
emplace_back
(
new
BlockDesc
(
*
o
.
blocks_
[
i
],
block
,
this
));
}
for
(
auto
&
block
:
blocks_
)
{
for
(
auto
*
op
:
block
->
AllOps
())
{
for
(
const
auto
&
attr
:
op
->
Proto
()
->
attrs
())
{
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
size_t
blk_idx
=
attr
.
block_idx
();
op
->
SetBlockAttr
(
attr
.
name
(),
*
this
->
MutableBlock
(
blk_idx
));
}
}
}
}
}
ProgramDesc
::
ProgramDesc
(
const
proto
::
ProgramDesc
&
desc
)
{
...
...
@@ -55,6 +64,16 @@ ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) {
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
}
for
(
auto
&
block
:
blocks_
)
{
for
(
auto
*
op
:
block
->
AllOps
())
{
for
(
const
auto
&
attr
:
op
->
Proto
()
->
attrs
())
{
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
size_t
blk_idx
=
attr
.
block_idx
();
op
->
SetBlockAttr
(
attr
.
name
(),
*
this
->
MutableBlock
(
blk_idx
));
}
}
}
}
}
ProgramDesc
::
ProgramDesc
(
const
std
::
string
&
binary_str
)
{
...
...
paddle/framework/prune.cc
浏览文件 @
3d1ac72a
...
...
@@ -49,11 +49,28 @@ bool IsTarget(const proto::OpDesc& op_desc) {
return
false
;
}
void
prune_impl
(
const
proto
::
ProgramDesc
&
input
,
proto
::
ProgramDesc
*
output
,
int
block_id
)
{
// TODO(tonyyang-svail):
// - will change to use multiple blocks for RNN op and Cond Op
int
GetSubBlockIndex
(
const
proto
::
OpDesc
&
op_desc
)
{
for
(
auto
&
attr
:
op_desc
.
attrs
())
{
if
(
attr
.
type
()
==
proto
::
AttrType
::
BLOCK
)
{
PADDLE_ENFORCE
(
attr
.
has_block_idx
());
return
attr
.
block_idx
();
}
}
return
-
1
;
}
bool
HasSubBlock
(
const
proto
::
OpDesc
&
op_desc
)
{
return
GetSubBlockIndex
(
op_desc
)
>
0
;
}
// block_id is the idx of the current block in the input desc
// parent_block_id is the idx of the parent of the current block
// in the output desc, -1 means the current block is global block
// dependent_vars is passed recursively from the parent block to
// the child block to help pruning
void
prune_impl
(
const
proto
::
ProgramDesc
&
input
,
proto
::
ProgramDesc
*
output
,
int
block_id
,
int
parent_block_id
,
std
::
set
<
std
::
string
>&
dependent_vars
)
{
auto
&
block
=
input
.
blocks
(
block_id
);
auto
&
ops
=
block
.
ops
();
...
...
@@ -72,11 +89,9 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
expect_fetch
=
(
op_desc
.
type
()
==
kFetchOpType
);
}
std
::
set
<
std
::
string
>
dependent_vars
;
std
::
vector
<
bool
>
should_run
;
for
(
auto
op_iter
=
ops
.
rbegin
();
op_iter
!=
ops
.
rend
();
++
op_iter
)
{
auto
&
op_desc
=
*
op_iter
;
if
(
IsTarget
(
op_desc
)
||
HasDependentVar
(
op_desc
,
dependent_vars
))
{
// insert its input to the dependency graph
for
(
auto
&
var
:
op_desc
.
inputs
())
{
...
...
@@ -84,7 +99,6 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
dependent_vars
.
insert
(
argu
);
}
}
should_run
.
push_back
(
true
);
}
else
{
should_run
.
push_back
(
false
);
...
...
@@ -95,45 +109,81 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
// we reverse the should_run vector
std
::
reverse
(
should_run
.
begin
(),
should_run
.
end
());
*
output
=
input
;
auto
*
op_field
=
output
->
mutable_blocks
(
block_id
)
->
mutable_ops
();
// copy the current block from input to output
auto
*
block_field
=
output
->
mutable_blocks
();
*
block_field
->
Add
()
=
input
.
blocks
(
block_id
);
int
output_block_id
=
output
->
blocks_size
()
-
1
;
auto
*
output_block
=
output
->
mutable_blocks
(
output_block_id
);
output_block
->
set_idx
(
output_block_id
);
output_block
->
set_parent_idx
(
parent_block_id
);
auto
*
op_field
=
output_block
->
mutable_ops
();
op_field
->
Clear
();
for
(
size_t
i
=
0
;
i
<
should_run
.
size
();
++
i
)
{
if
(
should_run
[
i
])
{
*
op_field
->
Add
()
=
input
.
blocks
(
block_id
).
ops
(
i
);
auto
*
op
=
op_field
->
Add
();
*
op
=
input
.
blocks
(
block_id
).
ops
(
i
);
if
(
HasSubBlock
(
*
op
))
{
// create sub_block_dependent_vars here to help prune the sub block
std
::
set
<
std
::
string
>
sub_block_dependent_vars
;
for
(
auto
&
var
:
op
->
inputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
sub_block_dependent_vars
.
insert
(
argu
);
}
}
for
(
auto
&
var
:
op
->
outputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
sub_block_dependent_vars
.
insert
(
argu
);
}
}
// GetSubBlockIndex(*op) is the idx of the sub_block in the input desc
// output_block_id is the idx of the current block in the output desc
prune_impl
(
input
,
output
,
GetSubBlockIndex
(
*
op
),
output_block_id
,
sub_block_dependent_vars
);
}
}
}
// remove the VarDescs in BlockDesc that are not referenced in
// the pruned OpDescs
std
::
unordered_map
<
std
::
string
,
proto
::
VarDesc
>
var_map
;
auto
*
var_field
=
output
->
mutable_blocks
(
block_id
)
->
mutable_vars
();
auto
*
var_field
=
output
->
mutable_blocks
(
output_
block_id
)
->
mutable_vars
();
for
(
const
auto
&
var
:
*
var_field
)
{
var_map
[
var
.
name
()]
=
var
;
}
var_field
->
Clear
()
;
std
::
set
<
std
::
string
>
var_names
;
for
(
const
auto
&
op
:
*
op_field
)
{
// add VarDescs of all input arguments for each OpDesc
auto
&
input_field
=
op
.
inputs
();
for
(
auto
&
input_var
:
input_field
)
{
for
(
auto
&
arg
:
input_var
.
arguments
())
{
*
var_field
->
Add
()
=
var_map
[
arg
];
if
(
var_map
.
count
(
arg
)
!=
0
)
{
var_names
.
insert
(
arg
);
}
}
}
// add VarDescs of all output arguments for each OpDesc
auto
&
output_field
=
op
.
outputs
();
for
(
auto
&
output_var
:
output_field
)
{
for
(
auto
&
arg
:
output_var
.
arguments
())
{
*
var_field
->
Add
()
=
var_map
[
arg
];
if
(
var_map
.
count
(
arg
)
!=
0
)
{
var_names
.
insert
(
arg
);
}
}
}
}
var_field
->
Clear
();
for
(
const
auto
&
name
:
var_names
)
{
*
var_field
->
Add
()
=
var_map
[
name
];
}
}
// TODO(fengjiayi): Prune() could be inplaced to avoid unnecessary copies
void
Prune
(
const
proto
::
ProgramDesc
&
input
,
proto
::
ProgramDesc
*
output
)
{
prune_impl
(
input
,
output
,
0
);
std
::
set
<
std
::
string
>
dependent_vars
;
output
->
clear_blocks
();
prune_impl
(
input
,
output
,
0
,
-
1
,
dependent_vars
);
}
void
inference_optimize_impl
(
const
proto
::
ProgramDesc
&
input
,
...
...
paddle/inference/tests/book/CMakeLists.txt
浏览文件 @
3d1ac72a
...
...
@@ -27,3 +27,4 @@ endfunction(inference_test)
inference_test
(
recognize_digits ARGS mlp
)
inference_test
(
image_classification ARGS vgg resnet
)
inference_test
(
label_semantic_roles
)
inference_test
(
rnn_encoder_decoder
)
paddle/inference/tests/book/test_inference_rnn_encoder_decoder.cc
0 → 100644
浏览文件 @
3d1ac72a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "test_helper.h"
DEFINE_string
(
dirname
,
""
,
"Directory of the inference model."
);
TEST
(
inference
,
rnn_encoder_decoder
)
{
if
(
FLAGS_dirname
.
empty
())
{
LOG
(
FATAL
)
<<
"Usage: ./example --dirname=path/to/your/model"
;
}
LOG
(
INFO
)
<<
"FLAGS_dirname: "
<<
FLAGS_dirname
<<
std
::
endl
;
std
::
string
dirname
=
FLAGS_dirname
;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle
::
framework
::
LoDTensor
word_data
,
trg_word
;
paddle
::
framework
::
LoD
lod
{{
0
,
4
,
10
}};
SetupLoDTensor
(
word_data
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
trg_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
word_data
);
cpu_feeds
.
push_back
(
&
trg_word
);
paddle
::
framework
::
LoDTensor
output1
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_fetchs1
;
cpu_fetchs1
.
push_back
(
&
output1
);
// Run inference on CPU
TestInference
<
paddle
::
platform
::
CPUPlace
,
float
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
);
LOG
(
INFO
)
<<
output1
.
lod
();
LOG
(
INFO
)
<<
output1
.
dims
();
#ifdef PADDLE_WITH_CUDA
paddle
::
framework
::
LoDTensor
output2
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_fetchs2
;
cpu_fetchs2
.
push_back
(
&
output2
);
// Run inference on CUDA GPU
TestInference
<
paddle
::
platform
::
CUDAPlace
,
float
>
(
dirname
,
cpu_feeds
,
cpu_fetchs2
);
LOG
(
INFO
)
<<
output2
.
lod
();
LOG
(
INFO
)
<<
output2
.
dims
();
CheckError
<
float
>
(
output1
,
output2
);
#endif
}
python/paddle/v2/fluid/tests/book/test_rnn_encoder_decoder.py
浏览文件 @
3d1ac72a
...
...
@@ -18,6 +18,10 @@ import paddle.v2.fluid as fluid
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.layers
as
layers
import
contextlib
import
math
import
sys
import
unittest
from
paddle.v2.fluid.executor
import
Executor
dict_size
=
30000
...
...
@@ -145,7 +149,7 @@ def seq_to_seq_net():
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
return
avg_cost
,
prediction
def
to_lodtensor
(
data
,
place
):
...
...
@@ -163,8 +167,16 @@ def to_lodtensor(data, place):
return
res
def
main
():
avg_cost
=
seq_to_seq_net
()
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
train
(
use_cuda
,
save_dirname
=
None
):
[
avg_cost
,
prediction
]
=
seq_to_seq_net
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
1e-4
)
optimizer
.
minimize
(
avg_cost
)
...
...
@@ -174,7 +186,7 @@ def main():
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
batch_size
=
batch_size
)
place
=
core
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
...
...
@@ -185,6 +197,7 @@ def main():
word_data
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
trg_word
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
trg_word_next
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)
outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
'source_sequence'
:
word_data
,
...
...
@@ -192,13 +205,86 @@ def main():
'label_sequence'
:
trg_word_next
},
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
print
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
))
if
math
.
isnan
(
float
(
avg_cost_val
[
0
])):
sys
.
exit
(
"got NaN loss, training failed."
)
if
batch_id
>
3
:
exit
(
0
)
if
save_dirname
is
not
None
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'source_sequence'
,
'target_sequence'
],
[
prediction
],
exe
)
return
batch_id
+=
1
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
word_data
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
trg_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'source_sequence'
assert
feed_target_names
[
1
]
==
'target_sequence'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word_data
,
feed_target_names
[
1
]:
trg_word
,
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
# Directory for saving the trained model
save_dirname
=
"rnn_encoder_decoder.inference.model"
train
(
use_cuda
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
class
TestRnnEncoderDecoder
(
unittest
.
TestCase
):
def
test_cuda
(
self
):
with
self
.
scope_prog_guard
():
main
(
use_cuda
=
True
)
def
test_cpu
(
self
):
with
self
.
scope_prog_guard
():
main
(
use_cuda
=
False
)
@
contextlib
.
contextmanager
def
scope_prog_guard
(
self
):
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
if
__name__
==
'__main__'
:
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录