Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3b6090e8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3b6090e8
编写于
9月 03, 2018
作者:
C
Chen Weihang
提交者:
GitHub
9月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12887 from chenwhql/sequence_enumerate_op
Feat: add sequence enumerate op
上级
4529f707
7ddbbcb0
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
397 addition
and
0 deletion
+397
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/sequence_enumerate_op.cc
paddle/fluid/operators/sequence_enumerate_op.cc
+97
-0
paddle/fluid/operators/sequence_enumerate_op.cu
paddle/fluid/operators/sequence_enumerate_op.cu
+84
-0
paddle/fluid/operators/sequence_enumerate_op.h
paddle/fluid/operators/sequence_enumerate_op.h
+56
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+47
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+7
-0
python/paddle/fluid/tests/unittests/test_sequence_enumerate_op.py
...addle/fluid/tests/unittests/test_sequence_enumerate_op.py
+105
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
3b6090e8
...
...
@@ -172,6 +172,7 @@ paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'],
paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.pad2d ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None))
paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
...
...
paddle/fluid/operators/sequence_enumerate_op.cc
0 → 100644
浏览文件 @
3b6090e8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_enumerate_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceEnumerateOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequecceEnumerate operator should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(X) of SequenceEnumerate operator should not be null."
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X) of SequenceEnumerate operator's rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
1UL
,
"Input(X) of SequenceEnumerate operator's 2nd dimension should be 1."
);
const
auto
win_size
=
ctx
->
Attrs
().
Get
<
int
>
(
"win_size"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
win_size
});
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
};
class
SequenceEnumerateOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(2-D LoDTensor with the 2nd dimension equal to 1) "
"Input LoDTensor of SequenceEnumerate operator."
);
AddOutput
(
"Out"
,
"(2-D LoDTensor with the 2nd dimension equal to win_size) "
"Output LoDTensor of SequenceEnumerate operator."
);
AddAttr
<
int
>
(
"win_size"
,
"(int) The enumerate sequence window size."
)
.
AddCustomChecker
([](
const
int
&
win_size
)
{
PADDLE_ENFORCE
(
win_size
>=
2
,
"The window size should be not less than 2."
);
});
AddAttr
<
int
>
(
"pad_value"
,
"(int) The enumerate sequence padding value."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
Sequence Enumerate Operator.
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
sequence_enumerate
,
ops
::
SequenceEnumerateOp
,
ops
::
SequenceEnumerateOpMaker
);
REGISTER_OP_CPU_KERNEL
(
sequence_enumerate
,
ops
::
SequenceEnumerateKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
ops
::
SequenceEnumerateKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_enumerate_op.cu
0 → 100644
浏览文件 @
3b6090e8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/operators/sequence_enumerate_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
__global__
void
CalcOutPut
(
const
T
*
in_data
,
const
size_t
*
in_lod
,
const
size_t
lod_len
,
const
int64_t
win_size
,
const
int64_t
pad_value
,
T
*
out_data
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
in_lod
[
lod_len
-
1
])
{
int
end_idx
=
0
;
// Get LoD interval of index
for
(
int
i
=
1
;
i
<
lod_len
;
++
i
)
{
if
(
index
<
in_lod
[
i
])
{
end_idx
=
in_lod
[
i
];
break
;
}
}
for
(
size_t
i
=
0
;
i
<
win_size
;
++
i
)
{
int
word_pos
=
index
+
i
;
out_data
[
index
*
win_size
+
i
]
=
word_pos
<
end_idx
?
in_data
[
word_pos
]
:
pad_value
;
}
}
}
template
<
typename
T
>
class
SequenceEnumerateOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
win_size
=
context
.
Attr
<
int
>
(
"win_size"
);
int
pad_value
=
context
.
Attr
<
int
>
(
"pad_value"
);
auto
in_dims
=
in
->
dims
();
auto
in_lod
=
in
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
"The actual input data's size mismatched with LoD information."
);
/* Generate enumerate sequence set */
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
lod0
=
in_lod
[
0
];
auto
in_len
=
in
->
numel
();
auto
in_data
=
in
->
data
<
T
>
();
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// Copy LoD to GPU
const
size_t
*
dev_in_lod_ptr
=
lod0
.
CUDAData
(
context
.
GetPlace
());
// Calc output tensor
CalcOutPut
<<<
(
in_len
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
dev_in_lod_ptr
,
lod0
.
size
(),
win_size
,
pad_value
,
out_data
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
sequence_enumerate
,
paddle
::
operators
::
SequenceEnumerateOpCUDAKernel
<
int32_t
>
,
paddle
::
operators
::
SequenceEnumerateOpCUDAKernel
<
int64_t
>
);
paddle/fluid/operators/sequence_enumerate_op.h
0 → 100644
浏览文件 @
3b6090e8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceEnumerateKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
win_size
=
context
.
Attr
<
int
>
(
"win_size"
);
int
pad_value
=
context
.
Attr
<
int
>
(
"pad_value"
);
auto
in_dims
=
in
->
dims
();
auto
in_lod
=
in
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
"The actual input data's size mismatched with LoD information."
);
// Generate enumerate sequence set
auto
lod0
=
in_lod
[
0
];
auto
in_data
=
in
->
data
<
T
>
();
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
lod0
.
size
()
-
1
;
++
i
)
{
for
(
size_t
idx
=
lod0
[
i
];
idx
<
lod0
[
i
+
1
];
++
idx
)
{
for
(
int
word_idx
=
0
;
word_idx
<
win_size
;
++
word_idx
)
{
size_t
word_pos
=
idx
+
word_idx
;
out_data
[
win_size
*
idx
+
word_idx
]
=
word_pos
<
lod0
[
i
+
1
]
?
in_data
[
word_pos
]
:
pad_value
;
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
3b6090e8
...
...
@@ -111,6 +111,7 @@ __all__ = [
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
]
...
...
@@ -5823,6 +5824,51 @@ def flatten(x, axis=1, name=None):
return
out
def
sequence_enumerate
(
input
,
win_size
,
pad_value
=
0
,
name
=
None
):
"""
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
Args:
input (Variable): The input variable which is a index sequence.
win_size (int): The window size for enumerating all sub-sequences.
pad_value (int): The padding value, default 0.
Returns:
Variable: The enumerate sequence variable which is a LoDTensor.
Examples:
.. code-block:: python
x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
helper
=
LayerHelper
(
'sequence_enumerate'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
(),
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'sequence_enumerate'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'win_size'
:
win_size
,
'pad_value'
:
pad_value
})
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
"""
**SequenceMask Layer**
...
...
@@ -5902,6 +5948,7 @@ def stack(x, axis=0):
helper
.
append_op
(
type
=
'stack'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Y'
:
out
},
attrs
=
{
'axis'
:
axis
})
return
out
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
3b6090e8
...
...
@@ -549,6 +549,13 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_sequence_enumerate
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
"input"
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
out
=
layers
.
sequence_enumerate
(
input
=
x
,
win_size
=
2
,
pad_value
=
0
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_sequence_enumerate_op.py
0 → 100644
浏览文件 @
3b6090e8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
sequence_enumerate
(
input_seq
,
in_lod
,
win_size
,
pad_value
):
lod0
=
[
0
]
for
i
in
range
(
0
,
len
(
in_lod
[
0
])):
lod0
.
append
(
lod0
[
i
]
+
in_lod
[
0
][
i
])
out_seq
=
[]
for
i
in
range
(
0
,
len
(
lod0
)
-
1
):
for
idx
in
range
(
lod0
[
i
],
lod0
[
i
+
1
]):
single_seq
=
[]
for
word_idx
in
range
(
win_size
):
word_pos
=
idx
+
word_idx
dat
=
input_seq
[
word_pos
]
if
word_pos
<
lod0
[
i
+
1
]
\
else
pad_value
single_seq
.
append
(
dat
)
out_seq
.
append
(
single_seq
)
return
out_seq
class
TestSequenceEnumerateOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sequence_enumerate"
self
.
init_test_case
()
self
.
inputs
=
{
'X'
:
(
self
.
in_seq
,
self
.
lod
)}
self
.
attrs
=
{
'win_size'
:
self
.
win_size
,
'pad_value'
:
self
.
pad_value
}
self
.
outputs
=
{
'Out'
:
(
self
.
out_seq
,
self
.
lod
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
2
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
class
TesSequenceEnumerateOpInt64
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int64"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
2
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int64"
)
class
TestSequenceEnumerateOpLargeWinSize
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
5
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
class
TestSequenceEnumerateOpMaxWinSize
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
30
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
class
TestSequenceEnumerateOpLargePadValue
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
5
self
.
pad_value
=
5
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录