提交 3a6f2002 编写于 作者: Y Yu Yang

Merge branch 'develop' into feature/extract_op_info_into_op_info.cc

......@@ -55,6 +55,7 @@ option(WITH_C_API "Compile PaddlePaddle with C-API(Prediction)" OFF)
option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF)
option(GLIDE_INSTALL "Download and install go dependencies " ON)
option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF)
option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF)
# CMAKE_BUILD_TYPE
if(NOT CMAKE_BUILD_TYPE)
......
......@@ -28,6 +28,10 @@ if(NOT WITH_TIMER)
add_definitions(-DPADDLE_DISABLE_TIMER)
endif(NOT WITH_TIMER)
if(USE_EIGEN_FOR_BLAS)
add_definitions(-DPADDLE_USE_EIGEN_FOR_BLAS)
endif(USE_EIGEN_FOR_BLAS)
if(NOT WITH_PROFILER)
add_definitions(-DPADDLE_DISABLE_PROFILER)
endif(NOT WITH_PROFILER)
......
......@@ -362,6 +362,11 @@ trans
.. autoclass:: paddle.v2.layer.trans
:noindex:
scale_shift
-----------
.. autoclass:: paddle.v2.layer.scale_shift
:noindex:
Sampling Layers
===============
......
......@@ -45,6 +45,7 @@ cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
sgd_op
gather_op
add_op
mul_op
rowwise_add_op
......
......@@ -110,7 +110,7 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
dup_output_ops[out].emplace_back(local_op_id);
return false;
});
net->AddOp(std::move(bwd));
net->AppendOp(std::move(bwd));
}
// Get unique ID for this method.
auto uid = uniq_id++;
......@@ -163,8 +163,9 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {{"Src", {prefix}}},
{{"Dst", {grad_input}}}, {}));
net->AppendOp(OpRegistry::CreateOp("fill_zeros_like",
{{"Src", {prefix}}},
{{"Dst", {grad_input}}}, {}));
}
return false;
});
......@@ -195,7 +196,7 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
if (net->ops_.empty()) { // Current no aux op is added to network
return grad_op;
}
net->AddOp(std::move(grad_op));
net->AppendOp(std::move(grad_op));
}
net->SetType("@GENERATED_BACKWARD@");
net->CompleteAddOp();
......
......@@ -75,13 +75,13 @@ class FcOp : public operators::NetOp {
FcOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AddOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}},
{{"Out", {Output("mul_result")}}}, {}));
AppendOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}},
{{"Out", {Output("mul_result")}}}, {}));
auto input_b = Inputs("b");
std::string before_act = "mul_result";
if (input_b.size() != 0) {
AddOp(OpRegistry::CreateOp(
AppendOp(OpRegistry::CreateOp(
"rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
{{"Out", {Output("add_result")}}}, {}));
before_act = "add_result";
......@@ -92,8 +92,8 @@ class FcOp : public operators::NetOp {
}
}
AddOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
{{"Out", {Output("Out")}}}, {}));
AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
{{"Out", {Output("Out")}}}, {}));
CompleteAddOp(false);
}
};
......@@ -234,13 +234,13 @@ TEST(Backward, net_fc_backward_not_have_b) {
TEST(Backward, net_input_of_network_not_need_grad) {
ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp(
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
{{"mul_result", {"mul_tmp_0"}},
{"add_result", {"add_tmp_0"}},
{"Out", {"hidden0"}}},
{}));
net.AddOp(f::OpRegistry::CreateOp(
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
{{"mul_result", {"mul_tmp_1"}},
{"add_result", {"add_tmp_1"}},
......@@ -273,10 +273,10 @@ TEST(Backward, net_input_of_network_not_need_grad) {
TEST(Backward, net_shared_weight) {
ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
{{"Out", {"out"}}}, {}));
net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
{{"Out", {"FinalOut"}}}, {}));
net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
{{"Out", {"out"}}}, {}));
net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
{{"Out", {"FinalOut"}}}, {}));
net.CompleteAddOp();
auto bwd = f::Backward(net, {});
......@@ -357,19 +357,19 @@ TEST(Backward, op_part_of_input_are_not_need) {
TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp(
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"mul_result", {"mul_out1"}},
{"add_result", {"add_out1"}},
{"Out", {"out1"}}},
{}));
net.AddOp(f::OpRegistry::CreateOp(
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
{{"mul_result", {"mul_out2"}},
{"add_result", {"tmp_out2"}},
{"Out", {"out2"}}},
{}));
net.AddOp(f::OpRegistry::CreateOp(
net.AppendOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
{{"mul_result", {"mul_out3"}},
{"add_result", {"tmp_out3"}},
......
......@@ -31,7 +31,7 @@ limitations under the License. */
namespace py = pybind11;
USE_OP(add_two);
USE_CPU_ONLY_OP(onehot_cross_entropy);
USE_OP(onehot_cross_entropy);
USE_OP(sgd);
USE_OP(mul);
USE_OP(mean);
......@@ -42,6 +42,7 @@ USE_OP(fill_zeros_like);
USE_OP_ITSELF(recurrent_op);
USE_OP(gaussian_random);
USE_OP(uniform_random);
USE_CPU_ONLY_OP(gather);
namespace paddle {
namespace framework {
......@@ -219,8 +220,8 @@ All parameter, weight, gradient are variables in Paddle.
retv->SetType("plain_net");
return retv;
})
.def("add_op", [](operators::NetOp &self,
const OperatorBase &op) { self.AddOp(op); })
.def("append_op", [](operators::NetOp &self,
const OperatorBase &op) { self.AppendOp(op); })
.def("complete_add_op", &operators::NetOp::CompleteAddOp)
.def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
self->CompleteAddOp();
......
......@@ -4,6 +4,10 @@ file(GLOB cpp_files . *Op.cpp)
list(APPEND h_files Function.h)
list(APPEND cpp_files Function.cpp)
list(APPEND cpp_files BufferArg.cpp)
list(APPEND cpp_files GemmFunctor.cpp)
if(USE_EIGEN_FOR_BLAS)
list(APPEND cpp_files EigenGemm.cpp)
endif(USE_EIGEN_FOR_BLAS)
if(WITH_GPU)
file(GLOB cu_files . *OpGpu.cu)
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#include "DepthwiseConvOp.h"
#include "ConvOp.h"
#include "GemmFunctor.h"
namespace paddle {
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "DepthwiseConvOp.h"
#include "GemmFunctor.h"
#include "paddle/math/BaseMatrix.h"
namespace paddle {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
template <class T>
struct EigenBlasGemm {
typedef Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, int>,
Eigen::Aligned>
Matrix;
static void compute(const bool transA,
const bool transB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc) {
Eigen::array<int, 2> sizeA;
if (transA) {
sizeA[0] = K;
sizeA[1] = M;
CHECK_EQ(M, lda);
} else {
sizeA[0] = M;
sizeA[1] = K;
CHECK_EQ(K, lda);
}
Eigen::array<int, 2> sizeB;
if (transB) {
sizeB[0] = N;
sizeB[1] = K;
CHECK_EQ(K, ldb);
} else {
sizeB[0] = K;
sizeB[1] = N;
CHECK_EQ(N, ldb);
}
Eigen::array<int, 2> sizeC;
sizeC[0] = M;
sizeC[1] = N;
CHECK_EQ(N, ldc);
const Matrix a(const_cast<T*>(A), sizeA);
const Matrix b(const_cast<T*>(B), sizeB);
Matrix c(C, sizeC);
typedef typename Eigen::Tensor<T, 2>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims;
dims[0] = DimPair(1, 0);
dims[0].first = transA ? 0 : 1;
dims[0].second = transB ? 1 : 0;
Eigen::DefaultDevice device;
if (alpha == T(1) && beta == T(0)) {
c.device(device) = a.contract(b, dims);
} else if (alpha == T(1) && beta == T(1)) {
c.device(device) += a.contract(b, dims);
} else {
c.device(device) = alpha * a.contract(b, dims) + beta * c;
}
}
};
#ifdef PADDLE_TYPE_DOUBLE
template class EigenBlasGemm<double>;
#else
template class EigenBlasGemm<float>;
#endif
} // namespace paddle
......@@ -85,7 +85,6 @@ public:
}
Im2ColFunctor<kCFO, Device, real> im2col;
GemmFunctor<Device, real> gemm;
size_t inputOffset = imShape.getElements();
size_t outputOffset =
(outputChannels / groups_) * outputHeight * outputWidth;
......@@ -108,19 +107,19 @@ public:
int M = outputChannels / groups_;
int N = outputHeight * outputWidth;
int K = inputChannels / groups_ * filterHeight * filterWidth;
gemm(CblasNoTrans,
CblasNoTrans,
M,
N,
K,
1.0f,
filterData + g * filterOffset,
K,
colData,
N,
beta,
outputData + g * outputOffset,
N);
BlasGemm<Device, real>::compute(false,
false,
M,
N,
K,
1.0f,
filterData + g * filterOffset,
K,
colData,
N,
beta,
outputData + g * outputOffset,
N);
}
inputData += inputChannels * inputHeight * inputWidth;
outputData += outputChannels * outputHeight * outputWidth;
......@@ -188,8 +187,6 @@ public:
}
Col2ImFunctor<kCFO, Device, real> col2im;
GemmFunctor<Device, real> gemm;
size_t inputOffset = imShape.getElements();
size_t outputOffset =
(outputChannels / groups_) * outputHeight * outputWidth;
......@@ -205,19 +202,19 @@ public:
colData = inputGrad + g * inputOffset;
scale = 1.0f;
}
gemm(CblasTrans,
CblasNoTrans,
M,
N,
K,
1.0f,
filterData + g * filterOffset,
M,
outputGrad + g * outputOffset,
N,
scale,
colData,
N);
BlasGemm<Device, real>::compute(true,
false,
M,
N,
K,
1.0f,
filterData + g * filterOffset,
M,
outputGrad + g * outputOffset,
N,
scale,
colData,
N);
if (needIm2col) {
col2im(inputGrad + g * inputOffset,
imShape,
......@@ -299,7 +296,6 @@ public:
}
Im2ColFunctor<kCFO, Device, real> im2col;
GemmFunctor<Device, real> gemm;
size_t inputOffset = imShape.getElements();
size_t outputOffset =
(outputChannels / groups_) * outputHeight * outputWidth;
......@@ -321,19 +317,19 @@ public:
int M = outputChannels / groups_;
int K = outputHeight * outputWidth;
int N = inputChannels / groups_ * filterHeight * filterWidth;
gemm(CblasNoTrans,
CblasTrans,
M,
N,
K,
1.0f,
outputGrad + g * outputOffset,
K,
colData,
K,
i == 0 ? beta : 1.0f,
filterGrad + g * filterOffset,
N);
BlasGemm<Device, real>::compute(false,
true,
M,
N,
K,
1.0f,
outputGrad + g * outputOffset,
K,
colData,
K,
i == 0 ? beta : 1.0f,
filterGrad + g * filterOffset,
N);
}
inputData += inputChannels * inputHeight * inputWidth;
outputGrad += outputChannels * outputHeight * outputWidth;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "GemmFunctor.h"
#include "paddle/math/MathFunctions.h"
namespace paddle {
template <class T>
struct BlasGemm<DEVICE_TYPE_CPU, T> {
static void compute(const bool transA,
const bool transB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc) {
#ifdef PADDLE_USE_EIGEN_FOR_BLAS
EigenBlasGemm<T>::compute(
transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
#else
gemm<T>(transA == false ? CblasNoTrans : CblasTrans,
transB == false ? CblasNoTrans : CblasTrans,
M,
N,
K,
alpha,
A,
lda,
B,
ldb,
beta,
C,
ldc);
#endif
}
};
template <class T>
struct BlasGemm<DEVICE_TYPE_GPU, T> {
static void compute(const bool transA,
const bool transB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc) {
hl_matrix_mul((T*)A,
transA == false ? HPPL_OP_N : HPPL_OP_T,
(T*)B,
transB == false ? HPPL_OP_N : HPPL_OP_T,
C,
M,
N,
K,
alpha,
beta,
lda,
ldb,
ldc);
}
};
template struct BlasGemm<DEVICE_TYPE_CPU, real>;
template struct BlasGemm<DEVICE_TYPE_GPU, real>;
} // namespace paddle
......@@ -14,7 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/math/MathFunctions.h"
#include "TensorType.h"
namespace paddle {
......@@ -24,73 +24,42 @@ namespace paddle {
// of MatMulFunction, we need to consider the reconstruction of hl_matrix_mul
// interface.
template <DeviceType Device, class T>
class GemmFunctor {
public:
void operator()(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc);
struct BlasGemm {
static void compute(const bool transA,
const bool transB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc);
};
// TODO(hedaoyuan): Since the definition of the real type in the Paddle
// conflicts with the Eigen library, so compile the Eigen code can not
// include the Paddle header file. And need an EigenBlasGemm template class
// that does not contain the DeviceType parameter.
// I will fix this problem and merge BlasGemm and EigenBlasGemm into one.
template <class T>
class GemmFunctor<DEVICE_TYPE_CPU, T> {
public:
void operator()(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc) {
gemm<T>(transA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
}
};
template <class T>
class GemmFunctor<DEVICE_TYPE_GPU, T> {
public:
void operator()(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE TransB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc) {
hl_matrix_mul((T*)A,
transA == CblasNoTrans ? HPPL_OP_N : HPPL_OP_T,
(T*)B,
TransB == CblasNoTrans ? HPPL_OP_N : HPPL_OP_T,
C,
M,
N,
K,
alpha,
beta,
lda,
ldb,
ldc);
}
struct EigenBlasGemm {
static void compute(const bool transA,
const bool transB,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc);
};
} // namespace paddle
......@@ -202,7 +202,7 @@ void NeuralNetwork::prefetch(const std::vector<Argument>& inArgs) {
auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
para->getMat(PARAMETER_VALUE).get());
para->clearGradient();
mat->clearIndices();
if (mat) mat->clearIndices();
}
}
}
......
......@@ -184,7 +184,7 @@ public:
}
void backward(const UpdateCallback& callback) override {
if (biases_) {
if (biases_ && biases_->getWGrad()) {
backwardActivation();
biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
biases_->getParameterPtr()->incUpdate(callback);
......@@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() {
/* width */ resultNum,
false,
/* useGpu */ false);
Matrix::resizeOrCreate(generator_.outArg.value,
/* height */ maxGenWordCount,
/* width */ 1,
false,
/* useGpu */ false);
}
ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
numSequences + 1,
......@@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() {
} else {
oneWaySearch(numSequences);
}
if (dataArgsSize_) createDataOutlink(batchMachineIdVec_);
if (dataArgsSize_) createDataOutlink();
size_t size = generator_.ids.size();
generator_.outArg.ids->resize(size);
......@@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
}
batchMachineIdVec_.clear();
batchMachineStartPos_.clear();
int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
starts[0] = 0;
generator_.ids.clear();
......@@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() {
finalPaths_[i].resize(minFinalPathsSize);
}
batchMachineIdVec_.clear();
generator_.ids.clear();
int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
starts[0] = 0;
if (numResults > 1) {
real* probs = generator_.outArg.in->getData();
int idsProbSaveSize = 0;
for (auto inSeq : finalPaths_) {
for (auto path : inSeq) idsProbSaveSize += path.ids.size();
idsProbSaveSize += inSeq.size();
}
Matrix::resizeOrCreate(
generator_.outArg.value, idsProbSaveSize, 1, false, false);
real* idsProb = generator_.outArg.value->getData();
real* probs = generator_.outArg.in->getData();
size_t curPos = 0;
for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
......@@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() {
curPos += genLen;
idsProb[curPos++] = -1.0;
probs[i * numResults + j] = path.logProb;
if (!j && dataArgsSize_) {
// in beam search, here only reserved the top 1 generated result
// for out_links that are not the generated word indices.
batchMachineIdVec_.insert(batchMachineIdVec_.end(),
path.machineIdVec.begin(),
path.machineIdVec.end());
}
}
starts[i + 1] = generator_.ids.size();
}
} else {
for (size_t i = 0; i < finalPaths_.size(); ++i) {
CHECK(!finalPaths_[i].empty());
generator_.ids.insert(generator_.ids.begin(),
finalPaths_[i][0].ids.begin(),
finalPaths_[i][0].ids.end());
starts[i + 1] = starts[i] + finalPaths_[i][0].ids.size();
Path& path = finalPaths_[i][0];
generator_.ids.insert(
generator_.ids.begin(), path.ids.begin(), path.ids.end());
starts[i + 1] = starts[i] + path.ids.size();
}
}
}
......@@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
}
}
void RecurrentGradientMachine::createDataOutlink(
std::vector<int>& machineIdVec) {
size_t seqNum =
getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size();
std::vector<int> starts(seqNum + 1, 0);
for (size_t i = 0; i < seqNum; ++i) {
size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size()
: finalPaths_[0][i].ids.size();
starts[i + 1] = starts[i] + seqLen;
void RecurrentGradientMachine::createDataOutlinkSelRowsInfo(
bool isSeq, std::vector<Argument>& outArgs) {
batchMachineIdVec_.clear();
size_t seqIdx = 0;
for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
std::vector<int>& machineIdVec = finalPaths_[i][j].machineIdVec;
if (isSeq) {
for (size_t i = 0; i < machineIdVec.size(); ++i) {
size_t rowId = machineIdVec[i];
int* seqPos =
outArgs[i].sequenceStartPositions->getMutableData(false);
batchMachineIdVec_.push_back(seqPos[rowId]);
}
} else {
batchMachineIdVec_.insert(
batchMachineIdVec_.end(), machineIdVec.begin(), machineIdVec.end());
}
seqIdx++;
}
}
}
void RecurrentGradientMachine::createDataOutlinkCopySizeInfo(
bool isSeq, std::vector<Argument>& outArgs, std::vector<int>& copySize) {
size_t totalSeqNum = std::accumulate(
finalPaths_.begin(),
finalPaths_.end(),
0UL,
[](size_t a, const std::vector<Path>& b) { return a + b.size(); });
copySize.resize(totalSeqNum, 1);
batchMachineStartPos_.resize(totalSeqNum + 1, 0);
if (isSeq) {
ICpuGpuVectorPtr inputSeqStartPos = outArgs[0].sequenceStartPositions;
CHECK_EQ(static_cast<size_t>(inputSeqStartPos->getSize() - 1),
getBeamSize() > 1 ? finalPaths_.size() : finalPaths_[0].size());
int* starts = inputSeqStartPos->getMutableData(false);
int seqId = 0;
for (int i = 0; i < finalPaths_.size(); ++i) {
for (int j = 0; j < finalPaths_[i].size(); ++j) {
copySize[seqId] = getBeamSize() > 1 ? starts[i + 1] - starts[i]
: starts[j + 1] - starts[j];
batchMachineStartPos_[seqId + 1] =
batchMachineStartPos_[seqId] + finalPaths_[i][j].ids.size();
seqId++;
}
}
} else {
for (size_t i = 0; i < finalPaths_[0].size(); ++i)
batchMachineStartPos_[i + 1] =
batchMachineStartPos_[i] + finalPaths_[0][i].ids.size();
}
}
void RecurrentGradientMachine::createDataOutlink() {
for (size_t i = 0; i < dataArgsSize_; i++) {
bool isSeq = dataArgsFrame_[i][0].hasSeq();
std::vector<int> copySize;
createDataOutlinkCopySizeInfo(isSeq, dataArgsFrame_[i], copySize);
createDataOutlinkSelRowsInfo(isSeq, dataArgsFrame_[i]);
dataArgs_[i].concat(dataArgsFrame_[i],
machineIdVec,
starts,
batchMachineIdVec_,
batchMachineStartPos_,
copySize,
useGpu_,
HPPL_STREAM_1,
PASS_TEST);
auto dataAgent =
dynamic_cast<DataLayer*>(outFrameLines_[i + 1].agentLayer.get());
CHECK_NOTNULL(dataAgent);
......
......@@ -190,7 +190,7 @@ public:
std::vector<int> ids;
/**
* @brief idsProb, log probability of each generated words.
* @brief idsProb, log probability of each generated word.
*/
std::vector<real> idsProb;
......@@ -472,15 +472,43 @@ private:
void copyDataOutlinkFrame(size_t machineCur);
/*
* @brief In generation, if the layer group has more than 1 outlink, outlinks
* except the first one are data outlinks. This function creates the data
* outlinks.
* @note In beam search, only one generated sequence with the hightest log
* probabilites are retained.
* @param machineIdVec : select a row of output matrix in each frame
* that the generation process expanded.
* @brief In generation, if the layer group has more than 1 outlink, outlink
* except the first one is a data outlink. In RecurrentLayerGroup, each time
* step is a separate Network, outputs of a layer inside the
* RecurrentLayerGroup are stored in separate Arguments. If one layer is
* specified as an outlink of RecurrentLayerGroup. This function will
* collect outputs in each time step of each generated sequence which are
* dispersed in separate Arguments to form a new single Argument as output of
* RecurrentLayerGroup.
*/
void createDataOutlink(std::vector<int>& machineIdVec);
void createDataOutlink();
/*
* @brief decide to select how many rows from the Matrix stored the forward
* pass results from a start position.
*
* @param isSeq: a flag indicating whetehr the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the the returned Arguments of the forward pass
* during the generation process.
* @param copySize: the returned result, number of rows to select from the
* Matrix stored the forward pass results from a start position.
*/
void createDataOutlinkCopySizeInfo(bool isSeq,
std::vector<Argument>& outArgs,
std::vector<int>& copySize);
/*
* @brief decide index of the start row for each time step of a generated
* sequence in Matrix stored the entire beam search batch's forward pass
* results.
*
* @param isSeq: a flag indicating whether the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the returned Arguments of the forward pass
* during the generation process.
*/
void createDataOutlinkSelRowsInfo(bool isSeq, std::vector<Argument>& outArgs);
/*
* @brief used in beam search, connect previous frame to form recurrent link
......@@ -543,6 +571,7 @@ private:
std::vector<int> topIds_;
std::vector<int> seqIds_;
std::vector<int> batchMachineIdVec_;
std::vector<int> batchMachineStartPos_;
std::vector<std::vector<Path>> finalPaths_;
std::vector<real> minFinalPathLogProb_;
BeamSearchControlCallbacks* beamSearchCtrlCallbacks_;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
namespace paddle {
/**
* A layer applies a linear transformation to each element in each row of
* the input matrix. For each element, the layer first re-scale it and then
* adds a bias to it.
*
* \f[
* y = wx + b
* \f]
*
* Here, w is the scale and b is the bias. Both w and b are trainable scalars.
*
*/
class ScaleShiftLayer : public Layer {
protected:
std::unique_ptr<Weight> scale_;
std::unique_ptr<Weight> offset_;
public:
explicit ScaleShiftLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
};
REGISTER_LAYER(scale_shift, ScaleShiftLayer);
bool ScaleShiftLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
Layer::init(layerMap, parameterMap);
CHECK_EQ(inputLayers_.size(), 1U);
scale_.reset(new Weight(1, 1, parameters_[0]));
if (biasParameter_.get() != NULL) {
offset_ = std::unique_ptr<Weight>(new Weight(1, 1, biasParameter_));
}
return true;
}
void ScaleShiftLayer::forward(PassType passType) {
Layer::forward(passType);
MatrixPtr inV = getInputValue(0);
resetOutput(inV->getHeight(), inV->getWidth());
MatrixPtr outV = getOutputValue();
real scaleValue = scale_->getW()->getElement(0, 0);
outV->mulScalar(*inV, scaleValue);
if (offset_) {
real offsetValue = offset_->getW()->getElement(0, 0);
outV->add(offsetValue);
}
}
void ScaleShiftLayer::backward(const UpdateCallback& callback) {
MatrixPtr inV = getInputValue(0);
MatrixPtr inG = getInputGrad(0);
MatrixPtr outV = getOutputValue();
MatrixPtr outG = getOutputGrad();
/* Calculate the parameter gradient for the current layer */
if (scale_->getWGrad()) {
MatrixPtr rowSumMtx;
Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_);
// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ij} * c_{ij}
rowSumMtx->sumOfProducts(
/* b= */ *inV, /* c= */ *outG, /* scaleSum= */ 1, /* scaleDest= */ 0.);
// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ji}
scale_->getWGrad()->sumCols(
/* b= */ *rowSumMtx, /* scaleSum= */ 1., /* scaleDest= */ 1.);
scale_->getParameterPtr()->incUpdate(callback);
}
if (offset_ && offset_->getWGrad()) {
MatrixPtr rowSumMtx;
Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_);
rowSumMtx->sumRows(*outG, 1., 0.);
offset_->getWGrad()->sumCols(*rowSumMtx, 1., 1.);
offset_->getParameterPtr()->incUpdate(callback);
}
/* Calculate the input layers error */
if (inG) {
real scaleValue = scale_->getW()->getElement(0, 0);
inG->add(*outG, scaleValue);
}
}
} // namespace paddle
......@@ -2007,6 +2007,21 @@ TEST(Layer, RowL2NormLayer) {
}
}
TEST(Layer, ScaleShiftLayer) {
const size_t batchSize = 16;
const size_t size = 32;
TestConfig config;
config.layerConfig.set_type("scale_shift");
config.layerConfig.set_size(size);
config.biasSize = 1;
config.inputDefs.push_back(
{INPUT_DATA, "input", /* dim= */ size, /* paraSize= */ 1});
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "scale_shift", batchSize, false, useGpu, false);
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
......
......@@ -269,7 +269,8 @@ TEST(Compare, img_conv2) {
bool useGpu = FLAGS_use_gpu;
double eps = FLAGS_checkgrad_eps;
FLAGS_use_gpu = true;
FLAGS_checkgrad_eps = 1e-2;
// Sometimes, this unit test will fail with 1e-2
FLAGS_checkgrad_eps = 4e-2;
compareNetwork(config_file_a, config_file_b);
FLAGS_use_gpu = useGpu;
FLAGS_checkgrad_eps = eps;
......
......@@ -43,6 +43,7 @@ endfunction()
add_subdirectory(math)
cc_test(gather_test SRCS gather_test.cc DEPS tensor)
op_library(gather_op SRCS gather_op.cc gather_op.cu)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
......
......@@ -39,11 +39,10 @@ class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
// TODO(superjom) add enforce here after helper functions ready
X_grad->Resize(X->dims());
dX->Resize(X->dims());
}
};
......@@ -70,9 +69,7 @@ namespace ops = paddle::operators;
REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp,
ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(
onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpKernel<float>);
......@@ -12,10 +12,122 @@
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
__host__ __device__ T clipping_log(const T x) {
PADDLE_ASSERT(std::is_floating_point<T>::value);
const T kApproInf = 1e20;
T v = log(x);
if (v == INFINITY) {
return kApproInf;
}
if (v == -INFINITY) {
return -kApproInf;
}
return v;
}
template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
const int N, const int D) {
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
// CUDA_1D_KERNEL_LOOP(i, N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
Y[i] = -clipping_log(X[i * D + label[i]]);
}
}
// TODO(qingqing): make zero setting an common function.
template <typename T>
__global__ void zero(T* X, const int N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
X[i] = 0.0;
}
}
template <typename T>
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
const int* label, const int N,
const int D) {
// TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
// CUDA_1D_KERNEL_LOOP(i, N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
int idx = i * D + label[i];
dX[idx] = -dY[i] / X[idx];
}
}
template <typename T>
class OnehotCrossEntropyOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto X = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>();
const int* label_data = ctx.Input<Tensor>("label")->data<int>();
auto Y = ctx.Output<Tensor>("Y");
Y->mutable_data<T>(ctx.GetPlace());
T* Ydata = Y->data<T>();
int N = X->dims()[0];
int D = X->dims()[1];
int block = 512;
int grid = (N + block - 1) / block;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
CrossEntropyKernel<T><<<grid, block>>>(Ydata, Xdata, label_data, N, D);
}
};
template <typename T>
class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto X = ctx.Input<Tensor>("X");
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto label = ctx.Input<Tensor>("label");
auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
auto* dYdata = dY->template data<T>();
auto* Xdata = X->template data<T>();
auto* label_data = label->data<int>();
int N = X->dims()[0];
int D = X->dims()[1];
int block = 512;
int grid = (N * D + block - 1) / block;
zero<T><<<grid, block>>>(dXdata, N * D);
grid = (N + block - 1) / block;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
CrossEntropyGradientKernel<T><<<grid, block>>>(dXdata, dYdata, Xdata,
label_data, N, D);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy,
ops::OnehotCrossEntropyOpCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpCUDAKernel<float>);
......@@ -21,7 +21,7 @@ namespace operators {
using Tensor = framework::Tensor;
template <typename T>
T tolerable_value(T x) {
inline T tolerable_value(const T x) {
static_assert(std::is_floating_point<T>::value,
"tolerable_value works only on float, "
"double and double double.");
......@@ -39,10 +39,13 @@ T tolerable_value(T x) {
return x;
}
template <typename Place, typename T>
template <typename T>
class OnehotCrossEntropyOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto X = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>();
const int* label_data = ctx.Input<Tensor>("label")->data<int>();
......@@ -62,10 +65,13 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel {
}
};
template <typename Place, typename T>
template <typename T>
class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto X = ctx.Input<Tensor>("X");
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
......@@ -79,6 +85,8 @@ class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel {
const int batch_size = X->dims()[0];
const int class_num = X->dims()[1];
// TODO(qingqing): make zero setting an common function.
memset(dXdata, 0, sizeof(T) * batch_size * class_num);
for (int i = 0; i < batch_size; ++i) {
int index = i * class_num + label_data[i];
dXdata[index] = -tolerable_value(dYdata[i] / Xdata[index]);
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
......@@ -25,13 +26,13 @@ namespace operators {
// Implementation of CPU copy
template <typename T>
void CPUGather(const T* params, const int* indices, const int slice_size,
void CPUGather(const T* src, const int* indices, const int slice_size,
const int index_size, T* output) {
const size_t slice_bytes = slice_size * sizeof(T);
for (int i = 0; i < index_size; ++i) {
int index_ = indices[i];
memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes);
memcpy(output + i * slice_size, src + index_ * slice_size, slice_bytes);
}
}
......@@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
int index_size = index->dims()[0];
auto src_dims = src->dims();
paddle::framework::DDim output_dims(src_dims);
framework::DDim output_dims(src_dims);
output_dims[0] = index_size;
// slice size
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gather_op.h"
#include "paddle/framework/ddim.h"
namespace paddle {
namespace operators {
class GatherOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
int batch_size = ctx.Input<Tensor>("Index")->dims()[0];
PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0");
framework::DDim output_dims(ctx.Input<Tensor>("X")->dims());
output_dims[0] = batch_size;
ctx.Output<Tensor>("Out")->Resize(output_dims);
}
};
class GatherGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
X_grad->Resize(X->dims());
}
};
class GatherOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GatherOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The source input of gather op");
AddInput("Index", "The index input of gather op");
AddOutput("Out", "The output of add op");
AddComment(R"DOC(
Gather Operator by selecting from the first axis,
Out = X[Index]
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, gather_grad,
ops::GatherGradOp);
REGISTER_OP_CPU_KERNEL(gather,
ops::GatherOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
gather_grad,
ops::GatherGradientOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/gather_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(gather,
ops::GatherOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "gather.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "scatter.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename Place, typename T>
class GatherOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *X = ctx.Input<Tensor>("X");
auto *Index = ctx.Input<Tensor>("Index");
auto *Y = ctx.Output<Tensor>("Out");
Y->mutable_data<T>(ctx.GetPlace());
Gather<T>(ctx.GetPlace(), X, Index, Y);
}
};
template <typename Place, typename T>
class GatherGradientOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *Index = ctx.Input<Tensor>("Index");
auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
dX->mutable_data<T>(ctx.GetPlace());
ScatterUpdate<T>(ctx.GetPlace(), dO, Index, dX);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -19,25 +16,25 @@ namespace paddle {
namespace operators {
template <typename T>
class GaussianRandomKernel : public framework::OpKernel {
class CPUGaussianRandomKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.op_.GetAttr<float>("mean");
float std = context.op_.GetAttr<float>("std");
auto* tensor = context.Output<framework::Tensor>(0);
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
// TODO(dzh): attribute does not support unsigned int.
// And we need a global random seed configuration.
int seed = context.op_.GetAttr<int>("seed");
unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
std::mt19937 g(seed);
std::normal_distribution<T> distribution(mean, std);
engine.seed(seed);
std::normal_distribution<T> dist(mean, std);
ssize_t size = framework::product(tensor->dims());
for (int i = 0; i < size; ++i) {
data[i] = distribution(g);
for (ssize_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
}
};
......@@ -48,7 +45,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0);
auto* tensor = context.Output<framework::Tensor>("Out");
auto dims = GetAttr<std::vector<int>>("dims");
PADDLE_ENFORCE(dims.size() > 0UL,
"dims can be one int or array. dims must be set.");
......@@ -68,8 +65,8 @@ Use to initialize tensor with gaussian random generator.
)DOC");
AddAttr<std::vector<int>>("dims", "The dimension of random tensor.");
AddAttr<float>("mean", "mean value of random.").SetDefault(.0f);
AddAttr<float>("std", "minimum value of random value.").SetDefault(1.0f);
AddAttr<float>("mean", "mean of random tensor.").SetDefault(.0f);
AddAttr<float>("std", "std of random tensor.").SetDefault(1.0f);
AddAttr<int>("seed",
"Random seed of generator."
"0 means use system wide seed")
......@@ -83,4 +80,4 @@ Use to initialize tensor with gaussian random generator.
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
ops::GaussianRandomOpMaker);
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::GaussianRandomKernel<float>);
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <random>
#include "paddle/platform/dynload/curand.h"
#include "paddle/platform/gpu_info.h"
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
template <typename T>
class GaussianRandomKernel : public framework::OpKernel {
struct GaussianGenerator {
T mean_, std_;
unsigned int seed_;
__host__ __device__ GaussianGenerator(T mean, T std, int seed)
: mean_(mean), std_(std), seed_(seed) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::normal_distribution<T> dist(mean_, std_);
rng.discard(n);
return dist(rng);
}
};
template <typename T>
class GPUGaussianRandomKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.op_.GetAttr<float>("mean");
float std = context.op_.GetAttr<float>("std");
auto* tensor = context.Output<framework::Tensor>(0);
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
int seed = context.op_.GetAttr<int>("seed");
unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
if (seed == 0) {
std::random_device rd;
seed = rd();
}
curandGenerator_t g;
PADDLE_ENFORCE(platform::dynload::curandCreateGenerator(
&g, CURAND_RNG_PSEUDO_DEFAULT));
PADDLE_ENFORCE(
platform::dynload::curandSetPseudoRandomGeneratorSeed(g, seed));
platform::dynload::curandGenerateNormal(
g, data, framework::product(tensor->dims()), mean, std);
T mean = static_cast<T>(context.op_.GetAttr<float>("mean"));
T std = static_cast<T>(context.op_.GetAttr<float>("std"));
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
ssize_t N = framework::product(tensor->dims());
thrust::transform(index_sequence_begin, index_sequence_begin + N,
thrust::device_ptr<T>(data),
GaussianGenerator<T>(mean, std, seed));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(gaussian_random, ops::GaussianRandomKernel<float>);
REGISTER_OP_GPU_KERNEL(gaussian_random,
paddle::operators::GPUGaussianRandomKernel<float>);
......@@ -13,7 +13,6 @@
limitations under the License. */
#include "paddle/operators/mul_op.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
......
......@@ -86,13 +86,14 @@ class NetOp : public framework::OperatorBase {
return true;
}
void AddOp(const framework::OperatorBase& op) { AddOp(op.Clone()); }
void AppendOp(const framework::OperatorBase& op) { AppendOp(op.Clone()); }
/**
* @brief Add an operator by ptr
*/
void AddOp(std::unique_ptr<framework::OperatorBase> op) {
PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed");
void AppendOp(std::unique_ptr<framework::OperatorBase> op) {
PADDLE_ENFORCE(!add_op_done_,
"Cannot AppendOp when this network is sealed");
PADDLE_ENFORCE_NOT_NULL(op, "Cannot Insert Null op");
ops_.push_back(std::move(op));
}
......
......@@ -38,10 +38,10 @@ TEST(OpKernel, all) {
auto net = std::make_shared<NetOp>();
ASSERT_NE(net, nullptr);
net->AddOp(std::unique_ptr<TestOp>(
net->AppendOp(std::unique_ptr<TestOp>(
new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {})));
net->AddOp(std::unique_ptr<TestOp>(
net->AppendOp(std::unique_ptr<TestOp>(
new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}},
{{"Out", {"z"}}}, {})));
......@@ -61,7 +61,7 @@ TEST(NetOp, insert_op) {
auto op1 = std::unique_ptr<framework::NOP>(
new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {}));
net.AddOp(*op1);
net.AppendOp(*op1);
net.InsertOp(0, *op1);
ASSERT_EQ(2UL, net.ops_.size());
net.InsertOp(2, std::move(op1));
......@@ -70,9 +70,9 @@ TEST(NetOp, insert_op) {
TEST(NetOp, Clone) {
NetOp net;
net.AddOp(
net.AppendOp(
std::unique_ptr<framework::NOP>(new framework::NOP{"empty", {}, {}, {}}));
net.AddOp(std::unique_ptr<framework::NOP>(
net.AppendOp(std::unique_ptr<framework::NOP>(
new framework::NOP{"empty2", {}, {}, {}}));
net.CompleteAddOp(true);
auto new_net_op = net.Clone();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
......@@ -63,7 +63,7 @@ class RowwiseAddGradKernel : public framework::OpKernel {
// https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html
// colwise add
Eigen::array<int, 1> dims{{1}}; /* dimension to reduce */
Eigen::array<int, 1> dims{{0}}; /* dimension to reduce */
EigenVector<T>::Flatten(*db).device(place) = OutGrad.sum(dims);
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -39,7 +36,8 @@ class CPUUniformRandomKernel : public framework::OpKernel {
std::uniform_real_distribution<T> dist(
static_cast<T>(context.op_.GetAttr<float>("min")),
static_cast<T>(context.op_.GetAttr<float>("max")));
for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) {
ssize_t size = framework::product(tensor->dims());
for (ssize_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
}
......@@ -66,7 +64,6 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddOutput("Out", "The output tensor of uniform random op");
AddComment(R"DOC(Uniform random operator.
Used to initialize tensor with uniform random generator.
)DOC");
AddAttr<std::vector<int>>("dims", "the dimension of random tensor");
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......
......@@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
void Argument::concat(const std::vector<Argument>& args,
const std::vector<int>& selectRows,
const std::vector<int>& seqStartPos,
const std::vector<int>& copySize,
bool useGpu,
hl_stream_t stream,
PassType passType) {
CHECK(!subSequenceStartPositions)
<< "undefined behavior for subsequence positions";
size_t batchSize = selectRows.size();
size_t batchSize = 0;
for (size_t i = 0; i < copySize.size(); ++i)
batchSize += copySize[i] * (seqStartPos[i + 1] - seqStartPos[i]);
auto copyArg = [batchSize, stream](MatrixPtr& dst,
MatrixPtr src,
int startRow,
int pos,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
if (!src) {
......@@ -300,14 +304,14 @@ void Argument::concat(const std::vector<Argument>& args,
dst->resize(batchSize, width);
}
MatrixPtr tmpMatrix = dst->subMatrix(startRow, size);
tmpMatrix->copyFrom(*src->subMatrix(pos, size), stream);
MatrixPtr tmpMatrix = dst->subMatrix(desStartRow, size);
tmpMatrix->copyFrom(*src->subMatrix(srcStartRow, size), stream);
};
auto copyIds = [batchSize, stream](IVectorPtr& dst,
const IVectorPtr& src,
int startRow,
int pos,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
if (!src) {
......@@ -315,13 +319,14 @@ void Argument::concat(const std::vector<Argument>& args,
return;
}
IVector::resizeOrCreate(dst, batchSize, useGpu);
dst->subVec(startRow, size)->copyFrom(*src->subVec(pos, size), stream);
dst->subVec(desStartRow, size)
->copyFrom(*src->subVec(srcStartRow, size), stream);
};
auto copyStrs = [batchSize, stream](SVectorPtr& dst,
const SVectorPtr& src,
int startRow,
int pos,
int desStartRow,
int srcStartRow,
int size,
bool useGpu) {
if (!src) {
......@@ -333,30 +338,31 @@ void Argument::concat(const std::vector<Argument>& args,
} else {
dst->resize(batchSize);
}
std::copy(
src->begin() + pos, src->begin() + pos + size, dst->begin() + startRow);
std::copy(src->begin() + srcStartRow,
src->begin() + srcStartRow + size,
dst->begin() + desStartRow);
};
dataId = args[0].dataId;
CHECK_NE(seqStartPos.size(), 0UL);
size_t sampleNum = seqStartPos.size() - 1;
for (size_t i = 0; i < sampleNum; ++i) {
int desStartRow = 0;
for (size_t i = 0; i < copySize.size(); ++i) {
int startPos = seqStartPos[i];
int endPos = seqStartPos[i + 1];
CHECK_GE(args.size(), static_cast<size_t>(endPos - startPos));
for (int j = startPos; j < endPos; ++j) {
const Argument& arg = args[j - startPos];
CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have"
<< " same dataId";
const int copySize = 1;
const int rowIdx = selectRows[j];
copyArg(in, arg.in, j, rowIdx, copySize, useGpu);
copyArg(value, arg.value, j, rowIdx, copySize, useGpu);
CHECK_EQ(arg.dataId, dataId) << "Arguments to concatenate should have "
<< "the same dataId.";
const int srcStartRow = selectRows[j];
copyArg(in, arg.in, desStartRow, srcStartRow, copySize[i], useGpu);
copyArg(value, arg.value, desStartRow, srcStartRow, copySize[i], useGpu);
if (passType != PASS_TEST) {
copyArg(grad, arg.grad, j, rowIdx, copySize, useGpu);
copyArg(grad, arg.grad, desStartRow, srcStartRow, copySize[i], useGpu);
}
copyIds(ids, arg.ids, j, rowIdx, copySize, useGpu);
copyStrs(strs, arg.strs, j, rowIdx, copySize, useGpu);
copyIds(ids, arg.ids, desStartRow, srcStartRow, copySize[i], useGpu);
copyStrs(strs, arg.strs, desStartRow, srcStartRow, copySize[i], useGpu);
desStartRow += copySize[i];
}
}
ICpuGpuVector::resizeOrCreate(
......
......@@ -240,6 +240,7 @@ struct Argument {
void concat(const std::vector<Argument>& args,
const std::vector<int>& selectRows,
const std::vector<int>& seqStartPos,
const std::vector<int>& copySize,
bool useGpu,
hl_stream_t stream,
PassType passType);
......
......@@ -65,7 +65,10 @@ public:
size_t getSize() const { return config_.size(); }
bool isFullSize() const {
return this->getSize() == bufs_[PARAMETER_VALUE]->getSize();
if (bufs_[PARAMETER_VALUE]) {
return this->getSize() == bufs_[PARAMETER_VALUE]->getSize();
}
return false;
}
inline bool useGpu() const { return useGpu_; }
......
......@@ -114,9 +114,6 @@ CUDADeviceContext::~CUDADeviceContext() {
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
}
if (curand_generator_) {
PADDLE_ENFORCE(dynload::curandDestroyGenerator(curand_generator_));
}
eigen_stream_.reset();
eigen_device_.reset();
PADDLE_ENFORCE(cudaStreamDestroy(stream_));
......@@ -152,19 +149,6 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() {
cudaStream_t CUDADeviceContext::stream() { return stream_; }
curandGenerator_t CUDADeviceContext::curand_generator() {
if (!curand_generator_) {
SetDeviceId(place_.device);
PADDLE_ENFORCE(dynload::curandCreateGenerator(&curand_generator_,
CURAND_RNG_PSEUDO_DEFAULT));
PADDLE_ENFORCE(
dynload::curandSetPseudoRandomGeneratorSeed(curand_generator_, seed_));
PADDLE_ENFORCE(dynload::curandSetStream(curand_generator_, stream_));
}
return curand_generator_;
}
#endif // PADDLE_ONLY_CPU
} // namespace platform
......
......@@ -17,7 +17,6 @@ limitations under the License. */
#ifndef PADDLE_ONLY_CPU
#include "paddle/platform/dynload/cublas.h"
#include "paddle/platform/dynload/cudnn.h"
#include "paddle/platform/dynload/curand.h"
#include "paddle/platform/gpu_info.h"
#define EIGEN_USE_GPU
#endif
......@@ -40,7 +39,7 @@ class DeviceContext {
class CPUDeviceContext : public DeviceContext {
public:
CPUDeviceContext();
explicit CPUDeviceContext(CPUPlace);
explicit CPUDeviceContext(CPUPlace place);
virtual ~CPUDeviceContext() {}
Eigen::DefaultDevice* eigen_device() const;
......@@ -56,7 +55,7 @@ class EigenCudaStreamDevice;
class CUDADeviceContext : public DeviceContext {
public:
explicit CUDADeviceContext(GPUPlace);
explicit CUDADeviceContext(GPUPlace place);
virtual ~CUDADeviceContext();
/*! \brief Wait for all operations completion in the stream. */
......@@ -75,9 +74,6 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle();
/*! \brief Return curand handle in the device context. */
curandGenerator_t curand_generator();
/*! \brief Return cuda stream in the device context. */
cudaStream_t stream();
// clang-format on
......@@ -85,18 +81,13 @@ class CUDADeviceContext : public DeviceContext {
private:
GPUPlace place_;
private:
std::unique_ptr<Eigen::GpuDevice> eigen_device_;
std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
private:
uint64_t seed_;
// clang-format off
cudaStream_t stream_{nullptr};
cudnnHandle_t cudnn_handle_{nullptr};
cublasHandle_t cublas_handle_{nullptr};
curandGenerator_t curand_generator_{nullptr};
// clang-format on
};
......
......@@ -43,8 +43,6 @@ TEST(Device, CUDADeviceContext) {
ASSERT_NE(nullptr, cudnn_handle);
cublasHandle_t cublas_handle = device_context->cublas_handle();
ASSERT_NE(nullptr, cublas_handle);
curandGenerator_t curand_handle = device_context->curand_generator();
ASSERT_NE(nullptr, curand_handle);
ASSERT_NE(nullptr, device_context->stream());
delete device_context;
}
......
......@@ -65,7 +65,6 @@ void ParameterClient2::initThreads() {
LOG(INFO) << "parallel_thread_num dosent need to set";
}
syncThreadPool_.reset(new SyncThreadPool(threadNum_));
startThreads();
}
......@@ -224,6 +223,14 @@ void ParameterClient2::prepareSendData(
request.set_cost(cost);
request.set_batch_status(batchStatus);
CHECK_EQ(request.blocks_size(), 0);
VLOG(10) << "request: trainer_id: " << request.trainer_id()
<< " update_mode" << request.update_mode()
<< " send_back_parameter: " << request.send_back_parameter()
<< " send_back_parameter_type: "
<< request.send_back_parameter_type()
<< " num_samples: " << request.num_samples()
<< " cost: " << request.cost()
<< " batch_status: " << request.batch_status();
}
for (const auto& segments : parameterSegments) {
const auto it = parameterMap_.find(segments.id);
......@@ -251,11 +258,17 @@ void ParameterClient2::prepareSendData(
CHECK(sendMat != nullptr) << "sendMat is nullptr";
syncThreadPool_->exec([&](int tid, size_t numThreads) {
std::lock_guard<std::mutex> guard(sparseAutoGrowthMutex_);
const auto& localIndices = prefetchMat->getLocalIndices();
/// num of sparse rows
size_t nLocalBlocks = localIndices.size();
uint64_t beginDim = 0;
uint64_t endDim = 0;
// FIXME(typhoonzero): let it resize first
prefetchMat->getLocalRow(nLocalBlocks + 1);
sendMat->getLocalRow(nLocalBlocks + 1);
for (size_t row = 0; row < nLocalBlocks; ++row) {
int64_t blockId = localIndices[row]; // local row -> sparse row
int serverId = std::abs((blockId + nameHash) % serviceNum_);
......@@ -275,7 +288,6 @@ void ParameterClient2::prepareSendData(
block->set_begin_pos(row * blockSize);
/// block len
block->set_block_size(endDim - beginDim);
if (sendingPara) {
sendJob->parallelInputIovs[serverId].push_back(
{sendMat->getLocalRow(row), sizeof(real) * (size_t)blockSize});
......
......@@ -583,6 +583,7 @@ protected:
#ifndef PADDLE_DISABLE_TIMER
uint64_t forwardbackwordTime_;
#endif
std::mutex sparseAutoGrowthMutex_;
/// map id to parameter used for decoding protobuf data
std::unordered_map<size_t, ParameterPtr> parameterMap_;
......
......@@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name,
in_links_count += 1
layer_name = MakeLayerNameInParentSubmodel(name)
layer = g_layer_map[layer_name]
ScatterAgentLayer(name=name, size=layer.size)
ScatterAgentLayer(
name=name, size=layer.size, width=layer.width, height=layer.height)
pair = g_current_submodel.in_links.add()
pair.layer_name = layer_name
......@@ -2197,8 +2198,8 @@ class MaxOutLayer(LayerBase):
maxout_conf = self.config.inputs[0].maxout_conf
parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
g_layer_map[input_layer.name].width, out_channels)
self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
maxout_conf.image_conf.img_size, out_channels)
@config_layer('row_conv')
......@@ -2232,6 +2233,20 @@ class ClipLayer(LayerBase):
self.config.inputs[0].clip_conf.max = max
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
def __init__(self, name, inputs, bias=True, **xargs):
super(ScaleShiftLayer, self).__init__(
name, 'scale_shift', 0, inputs=inputs, **xargs)
config_assert(
len(self.inputs) == 1,
'ScaleShiftLayer must have one and only one input.')
input_layer = self.get_input_layer(0)
self.set_layer_size(input_layer.size)
self.create_input_parameter(0, 1, [1, 1])
self.create_bias_parameter(bias, 1)
# key: cost type
# value: cost class
g_cost_map = {}
......@@ -2391,9 +2406,11 @@ class GatherAgentLayer(LayerBase):
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
def __init__(self, name, size, device=None):
def __init__(self, name, size, width=None, height=None, device=None):
super(ScatterAgentLayer, self).__init__(
name, 'scatter_agent', size, inputs=[], device=device)
if height and width:
self.set_layer_height_width(height, width)
@config_layer('multiplex')
......
......@@ -16,11 +16,13 @@ import functools
import collections
import inspect
import paddle.trainer.config_parser as cp
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
CudnnAvgPooling, CudnnMaxPooling
from .attrs import *
from .default_decorators import *
......@@ -133,6 +135,7 @@ __all__ = [
'clip_layer',
'slice_projection',
'kmax_sequence_score_layer',
'scale_shift_layer',
]
......@@ -230,6 +233,7 @@ class LayerType(object):
CLIP_LAYER = 'clip'
KMAX_SEQ_SCORE = 'kmax_seq_score'
SCALE_SHIFT_LAYER = 'scale_shift'
@staticmethod
def is_layer_type(type_name):
......@@ -328,6 +332,14 @@ class LayerOutput(object):
self.outputs = outputs
self.reverse = reverse
@property
def width(self):
return cp.g_layer_map[self.full_name].width
@property
def height(self):
return cp.g_layer_map[self.full_name].height
def set_input(self, input):
"""
Set the input for a memory layer. Can only be used for memory layer
......@@ -909,7 +921,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
width=width,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.DATA, size=size)
num_filters = None
if height is not None and width is not None:
num_filters = size / (width * height)
assert num_filters * width * height == size, \
"size=%s width=%s height=%s" % (size, width, height)
return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
@wrap_name_default("embedding")
......@@ -2569,6 +2587,10 @@ def img_pool_layer(input,
assert input.num_filters is not None
num_channels = input.num_filters
assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
CudnnMaxPooling], \
"only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"
if pool_type is None:
pool_type = MaxPooling()
elif isinstance(pool_type, AvgPooling):
......@@ -2578,7 +2600,6 @@ def img_pool_layer(input,
if (
isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
else pool_type.name
pool_size_y = pool_size if pool_size_y is None else pool_size_y
stride_y = stride if stride_y is None else stride_y
padding_y = padding if padding_y is None else padding_y
......@@ -4202,8 +4223,7 @@ def conv_operator(img,
num_channels = img.num_filters
assert isinstance(filter, LayerOutput)
if filter.size is not None:
filter.size = filter_size * filter_size_y * num_filters * num_channels
assert filter.size is not None
opCls = ConvTransOperator if trans else ConvOperator
......@@ -4914,7 +4934,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert input.layer_type == LayerType.CONV_LAYER
assert isinstance(input.activation, LinearActivation)
assert groups > 1
if num_channels is None:
......@@ -6210,3 +6229,43 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1):
return LayerOutput(
name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
"""
A layer applies a linear transformation to each element in each row of
the input matrix. For each element, the layer first re-scale it and then
adds a bias to it.
This layer is very like the SlopeInterceptLayer, except the scale and
bias are trainable.
.. math::
y = w * x + b
.. code-block:: python
scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)
:param name: The Layer Name.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput.
:param param_attr: The parameter attribute of scaling.
:type param_attr: ParameterAttribute
:param bias_attr: The parameter attribute of shifting.
:type bias_attr: ParameterAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
name=name,
type=LayerType.SCALE_SHIFT_LAYER,
inputs=Input(input.name, **param_attr.attr),
bias=ParamAttr.to_bias(bias_attr))
return LayerOutput(
name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
......@@ -8,6 +8,6 @@ test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_seq_select_layers)
test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer)
export whole_configs=(test_split_datasource)
type: "nn"
layers {
name: "data"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__scale_shift_0__"
type: "scale_shift"
size: 100
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___scale_shift_0__.w0"
}
}
layers {
name: "__scale_shift_1__"
type: "scale_shift"
size: 100
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___scale_shift_1__.w0"
}
bias_parameter_name: "___scale_shift_1__.wbias"
}
parameters {
name: "___scale_shift_0__.w0"
size: 1
initial_mean: 0.0
initial_std: 1.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___scale_shift_1__.w0"
size: 1
initial_mean: 0.0
initial_std: 1.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___scale_shift_1__.wbias"
size: 1
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__scale_shift_0__"
output_layer_names: "__scale_shift_1__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__scale_shift_0__"
layer_names: "__scale_shift_1__"
input_layer_names: "data"
output_layer_names: "__scale_shift_0__"
output_layer_names: "__scale_shift_1__"
is_recurrent_layer_group: false
}
from paddle.trainer_config_helpers import *
data = data_layer(name='data', size=100)
scale = scale_shift_layer(input=data, bias_attr=False)
scale_shift = scale_shift_layer(input=data)
outputs(scale, scale_shift)
......@@ -13,6 +13,7 @@ py_test(test_add_two_op SRCS test_add_two_op.py)
py_test(test_sigmoid_op SRCS test_sigmoid_op.py)
py_test(test_softmax_op SRCS test_softmax_op.py)
py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py)
py_test(test_gather_op SRCS test_gather_op.py)
py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
py_test(gradient_checker SRCS gradient_checker.py)
......@@ -22,7 +23,7 @@ py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py)
py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py)
py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py)
......
......@@ -64,7 +64,8 @@ class OpTestMeta(type):
actual = numpy.array(scope.find_var(out_name).get_tensor())
expect = self.outputs[out_name]
self.assertTrue(
numpy.allclose(actual, expect),
numpy.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
obj.test_all = test_all
......
......@@ -8,9 +8,8 @@ class TestCrossEntropy(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
# TODO this unit test is not passed
self.type = "onehot_cross_entropy"
batch_size = 100
batch_size = 30
class_num = 10
X = numpy.random.random((batch_size, class_num)).astype("float32")
label = 5 * numpy.ones(batch_size).astype("int32")
......@@ -22,9 +21,9 @@ class TestCrossEntropy(unittest.TestCase):
class CrossEntropyGradOpTest(GradientChecker):
def test_softmax_grad(self):
def test_check_grad(self):
op = create_op("onehot_cross_entropy")
batch_size = 100
batch_size = 30
class_num = 10
inputs = {
"X": numpy.random.uniform(
......
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
class TestGatherOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "gather"
xnp = numpy.random.random((10, 20)).astype("float32")
self.inputs = {
'X': xnp,
'Index': numpy.array([1, 3, 5]).astype("int32")
}
self.outputs = {'Out': self.inputs['X'][self.inputs['Index']]}
class TestGatherGradOp(GradientChecker):
def test_gather_grad(self):
print 'creating op'
op = create_op("gather")
print 'creating op done'
xnp = numpy.random.random((10, 20)).astype("float32")
inputs = {'X': xnp, 'Index': numpy.array([1, 3, 5]).astype("int32")}
print 'correct before check gradient'
self.check_grad(op, inputs, set("X"), "Out")
if __name__ == "__main__":
unittest.main()
......@@ -6,8 +6,8 @@ import unittest
def fc(X, W, Y):
ret_v = core.Net.create()
ret_v.add_op(Operator("mul", X="X", Y="W", Out="pre_activation"))
ret_v.add_op(Operator("sigmoid", X="pre_activation", Y=Y))
ret_v.append_op(Operator("mul", X="X", Y="W", Out="pre_activation"))
ret_v.append_op(Operator("sigmoid", X="pre_activation", Y=Y))
ret_v.complete_add_op(True)
return ret_v
......@@ -16,12 +16,12 @@ class TestNet(unittest.TestCase):
def test_net_all(self):
net = core.Net.create()
op1 = Operator("add_two", X="X", Y="Y", Out="Out")
net.add_op(op1)
net.append_op(op1)
net2 = core.Net.create()
net2.add_op(fc(X="X", W="w", Y="fc.out"))
net2.append_op(fc(X="X", W="w", Y="fc.out"))
net2.complete_add_op(True)
net.add_op(net2)
net.append_op(net2)
net.complete_add_op(True)
expected = '''
......
......@@ -150,7 +150,7 @@ class TestRecurrentOp(unittest.TestCase):
sig_op = Operator("sigmoid", X="sum", Y="h@alias")
for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
stepnet.add_op(op)
stepnet.append_op(op)
stepnet.complete_add_op(True)
self.rnnop.set_stepnet(stepnet)
......
......@@ -20,7 +20,7 @@ class RowwiseAddGradOpTest(GradientChecker):
def test_rowwise_add(self):
op = create_op("rowwise_add")
inputs = {
"X": np.random.uniform(0.1, 1, [10, 10]).astype("float32"),
"X": np.random.uniform(0.1, 1, [5, 10]).astype("float32"),
"b": np.random.uniform(0.1, 1, [10]).astype("float32")
}
self.check_grad(op, inputs, set(["X", "b"]), "Out")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册