提交 3a09ebef 编写于 作者: T tensor-tang

update alexnet training data

上级 6b475981
......@@ -22,6 +22,7 @@ On each machine, we will test and compare the performance of training on single
#### Training
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Pay attetion that the speed below includes forward, backward and parameter update time. So we can not directly compare the data with the benchmark of caffe `time` [command](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/caffe/image/run.sh#L9), which only contain forward and backward. The updating time of parameter would become very heavy when the weight size are large, especially on alexnet.
Input image size - 3 * 224 * 224, Time: images/second
......@@ -55,6 +56,16 @@ Input image size - 3 * 224 * 224, Time: images/second
<img src="figs/googlenet-cpu-train.png" width="500">
- Alexnet
| BatchSize | 64 | 128 | 256 |
|--------------|--------| ------ | -------|
| OpenBLAS | 0.85 | 1.03 | 1.17 |
| MKLML | 71.26 | 106.94 | 155.18 |
| MKL-DNN     | 362.66 | 497.66 | 610.73 |
chart TBD
#### Inference
Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- VGG-19
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册