未验证 提交 3903e78c 编写于 作者: Y ykkk2333 提交者: GitHub

add yolov3 darknet config to develop, test=kunlun (#3034)

上级 f0a30f3b
architecture: YOLOv3
use_gpu: false
use_xpu: true
max_iters: 1200
log_iter: 1
save_dir: output
snapshot_iter: 200
metric: VOC
map_type: integral
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar
weights: output/yolov3_darknet_roadsign_xpu/model_final
num_classes: 4
finetune_exclude_pretrained_params: ['yolo_output']
use_fine_grained_loss: false
YOLOv3:
backbone: DarkNet
yolo_head: YOLOv3Head
DarkNet:
norm_type: bn
norm_decay: 0.
depth: 53
YOLOv3Head:
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
norm_decay: 0.
yolo_loss: YOLOv3Loss
nms:
background_label: -1
keep_top_k: 100
nms_threshold: 0.45
nms_top_k: 1000
normalized: false
score_threshold: 0.01
YOLOv3Loss:
ignore_thresh: 0.7
label_smooth: true
LearningRate:
base_lr: 0.000125 #0.00025
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 800 #400
- 1100 #550
- !LinearWarmup
start_factor: 0.
steps: 200 #200
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
TrainReader:
inputs_def:
fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
num_max_boxes: 50
dataset:
!VOCDataSet
dataset_dir: dataset/roadsign_voc
anno_path: train.txt
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
with_mixup: True
- !MixupImage
alpha: 1.5
beta: 1.5
- !ColorDistort {}
- !RandomExpand
fill_value: [123.675, 116.28, 103.53]
ratio: 1.5
- !RandomCrop {}
- !RandomFlipImage
is_normalized: false
- !NormalizeBox {}
- !PadBox
num_max_boxes: 50
- !BboxXYXY2XYWH {}
batch_transforms:
- !RandomShape
sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
random_inter: True
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
# Gt2YoloTarget is only used when use_fine_grained_loss set as true,
# this operator will be deleted automatically if use_fine_grained_loss
# is set as false
- !Gt2YoloTarget
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
downsample_ratios: [32, 16, 8]
batch_size: 2
shuffle: true
mixup_epoch: 250
drop_last: true
worker_num: 2
bufsize: 2
use_process: false #true
EvalReader:
inputs_def:
fields: ['image', 'im_size', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult']
num_max_boxes: 50
dataset:
!VOCDataSet
dataset_dir: dataset/roadsign_voc
anno_path: valid.txt
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
- !ResizeImage
target_size: 608
interp: 2
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !PadBox
num_max_boxes: 50
- !Permute
to_bgr: false
channel_first: True
batch_size: 4
drop_empty: false
worker_num: 4
bufsize: 2
TestReader:
inputs_def:
image_shape: [3, 608, 608]
fields: ['image', 'im_size', 'im_id']
dataset:
!ImageFolder
anno_path: dataset/roadsign_voc/label_list.txt
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
- !ResizeImage
target_size: 608
interp: 2
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 1
......@@ -6,8 +6,11 @@
## yolov3
### Prepare data
Prepare data roadsign
Prepare data roadsign:
```shell
cd PaddleDetection/static/dataset/roadsign_voc/
python3.7 download_roadsign_voc.py
```
### Train
```shell
......@@ -20,6 +23,19 @@ python3.7 -u tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_g
python3.7 -u tools/eval.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o weights=output/yolov3_mobilenet_v1_roadsign/model_final.pdparams use_gpu=False use_xpu=True
```
### Train on Darknet
```shell
cd static/
python3.7 -u tools/train.py -c configs/yolov3_datknet_roadsign_kunlun.yml -o use_gpu=False use_xpu=True
```
### Eval on Darknet
```shell
cd static/
python3.7 -u tools/eval.py -c configs/yolov3_darknet_roadsign_kunlun.yml -o weights=output/yolov3_darknet_roadsign_kunlun/model_final.pdparams use_gpu=False use_xpu=True
```
## ppyolo
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册