Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
37962dcb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
37962dcb
编写于
6月 10, 2021
作者:
Z
zhiboniu
提交者:
GitHub
6月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add DarkPsoe support (#3341)
* add DarkPsoe support * modify Top-Down bbox_file str to bbox.json
上级
0b763b3d
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
425 addition
and
20 deletion
+425
-20
configs/keypoint/README.md
configs/keypoint/README.md
+1
-0
configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml
configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml
+143
-0
configs/keypoint/hrnet/dark_hrnet_w48_256x192.yml
configs/keypoint/hrnet/dark_hrnet_w48_256x192.yml
+143
-0
configs/keypoint/hrnet/hrnet_w32_256x192.yml
configs/keypoint/hrnet/hrnet_w32_256x192.yml
+1
-1
configs/keypoint/hrnet/hrnet_w32_384x288.yml
configs/keypoint/hrnet/hrnet_w32_384x288.yml
+1
-1
deploy/python/keypoint_det_unite_infer.py
deploy/python/keypoint_det_unite_infer.py
+4
-2
ppdet/data/transform/keypoint_operators.py
ppdet/data/transform/keypoint_operators.py
+66
-4
ppdet/modeling/architectures/keypoint_hrnet.py
ppdet/modeling/architectures/keypoint_hrnet.py
+66
-12
未找到文件。
configs/keypoint/README.md
浏览文件 @
37962dcb
...
@@ -35,6 +35,7 @@
...
@@ -35,6 +35,7 @@
目前KeyPoint模型基于coco数据集开发,其他数据集尚未验证
目前KeyPoint模型基于coco数据集开发,其他数据集尚未验证
请参考PaddleDetection
[
数据准备部分
](
https://github.com/PaddlePaddle/PaddleDetection/blob/f0a30f3ba6095ebfdc8fffb6d02766406afc438a/docs/tutorials/PrepareDataSet.md
)
部署准备COCO数据集即可
请参考PaddleDetection
[
数据准备部分
](
https://github.com/PaddlePaddle/PaddleDetection/blob/f0a30f3ba6095ebfdc8fffb6d02766406afc438a/docs/tutorials/PrepareDataSet.md
)
部署准备COCO数据集即可
请注意,Top-Down方案使用检测框测试时,需要给予检测模型生成bbox.json文件,或者从网上
[
下载地址
](
https://paddledet.bj.bcebos.com/data/bbox.json
)
下载后放在根目录(PaddleDetection)下,然后修改config配置文件中use_gt_bbox: False后生效。然后正常执行测试命令即可。
### 3、训练与测试
### 3、训练与测试
...
...
configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml
0 → 100644
浏览文件 @
37962dcb
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/hrnet_w32_256x192/model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
256
train_width
:
&train_width
192
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
48
,
64
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams
TopDownHRNet
:
backbone
:
HRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
32
loss
:
KeyPointMSELoss
HRNet
:
width
:
*width
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
#####optimizer
LearningRate
:
base_lr
:
0.0005
schedulers
:
-
!PiecewiseDecay
milestones
:
[
170
,
200
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
1000
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
train2017
anno_path
:
annotations/person_keypoints_train2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
bbox_file
:
bbox.json
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.5
rot
:
40
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
64
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
configs/keypoint/hrnet/dark_hrnet_w48_256x192.yml
0 → 100644
浏览文件 @
37962dcb
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/hrnet_w48_256x192/model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
256
train_width
:
&train_width
192
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
48
,
64
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W48_C_pretrained.pdparams
TopDownHRNet
:
backbone
:
HRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
48
loss
:
KeyPointMSELoss
HRNet
:
width
:
*width
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
#####optimizer
LearningRate
:
base_lr
:
0.0005
schedulers
:
-
!PiecewiseDecay
milestones
:
[
170
,
200
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
1000
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
train2017
anno_path
:
annotations/person_keypoints_train2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
bbox_file
:
bbox.json
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.5
rot
:
40
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
64
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
configs/keypoint/hrnet/hrnet_w32_256x192.yml
浏览文件 @
37962dcb
...
@@ -73,7 +73,7 @@ EvalDataset:
...
@@ -73,7 +73,7 @@ EvalDataset:
image_dir
:
val2017
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
dataset_dir
:
dataset/coco
bbox_file
:
person_detection_results/COCO_val2017_detections_AP_H_56_person
.json
bbox_file
:
bbox
.json
num_joints
:
*num_joints
num_joints
:
*num_joints
trainsize
:
*trainsize
trainsize
:
*trainsize
pixel_std
:
*pixel_std
pixel_std
:
*pixel_std
...
...
configs/keypoint/hrnet/hrnet_w32_384x288.yml
浏览文件 @
37962dcb
...
@@ -74,7 +74,7 @@ EvalDataset:
...
@@ -74,7 +74,7 @@ EvalDataset:
image_dir
:
val2017
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
dataset_dir
:
dataset/coco
bbox_file
:
person_detection_results/COCO_val2017_detections_AP_H_56_person
.json
bbox_file
:
bbox
.json
num_joints
:
*num_joints
num_joints
:
*num_joints
trainsize
:
*trainsize
trainsize
:
*trainsize
pixel_std
:
*pixel_std
pixel_std
:
*pixel_std
...
...
deploy/python/keypoint_det_unite_infer.py
浏览文件 @
37962dcb
...
@@ -68,7 +68,9 @@ def affine_backto_orgimages(keypoint_result, batch_records):
...
@@ -68,7 +68,9 @@ def affine_backto_orgimages(keypoint_result, batch_records):
def
topdown_unite_predict
(
detector
,
topdown_keypoint_detector
,
image_list
):
def
topdown_unite_predict
(
detector
,
topdown_keypoint_detector
,
image_list
):
for
i
,
img_file
in
enumerate
(
image_list
):
for
i
,
img_file
in
enumerate
(
image_list
):
image
,
_
=
decode_image
(
img_file
,
{})
image
,
_
=
decode_image
(
img_file
,
{})
results
=
detector
.
predict
(
image
,
FLAGS
.
det_threshold
)
results
=
detector
.
predict
([
image
],
FLAGS
.
det_threshold
)
if
results
[
'boxes_num'
]
==
0
:
continue
batchs_images
,
det_rects
=
get_person_from_rect
(
image
,
results
)
batchs_images
,
det_rects
=
get_person_from_rect
(
image
,
results
)
keypoint_vector
=
[]
keypoint_vector
=
[]
score_vector
=
[]
score_vector
=
[]
...
@@ -121,7 +123,7 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
...
@@ -121,7 +123,7 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
print
(
'detect frame:%d'
%
(
index
))
print
(
'detect frame:%d'
%
(
index
))
frame2
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
frame2
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
results
=
detector
.
predict
(
frame2
,
FLAGS
.
det_threshold
)
results
=
detector
.
predict
(
[
frame2
]
,
FLAGS
.
det_threshold
)
batchs_images
,
rect_vecotr
=
get_person_from_rect
(
frame2
,
results
)
batchs_images
,
rect_vecotr
=
get_person_from_rect
(
frame2
,
results
)
keypoint_vector
=
[]
keypoint_vector
=
[]
score_vector
=
[]
score_vector
=
[]
...
...
ppdet/data/transform/keypoint_operators.py
浏览文件 @
37962dcb
...
@@ -39,7 +39,8 @@ registered_ops = []
...
@@ -39,7 +39,8 @@ registered_ops = []
__all__
=
[
__all__
=
[
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'TopDownEvalAffine'
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'ToHeatmapsTopDown_DARK'
,
'TopDownEvalAffine'
]
]
...
@@ -393,6 +394,9 @@ class ToHeatmaps(object):
...
@@ -393,6 +394,9 @@ class ToHeatmaps(object):
dul
=
np
.
clip
(
ul
,
0
,
hmsize
-
1
)
dul
=
np
.
clip
(
ul
,
0
,
hmsize
-
1
)
dbr
=
np
.
clip
(
br
,
0
,
hmsize
)
dbr
=
np
.
clip
(
br
,
0
,
hmsize
)
for
i
in
range
(
len
(
visible
)):
for
i
in
range
(
len
(
visible
)):
if
visible
[
i
][
0
]
<
0
or
visible
[
i
][
1
]
<
0
or
visible
[
i
][
0
]
>=
hmsize
or
visible
[
i
][
1
]
>=
hmsize
:
continue
dx1
,
dy1
=
dul
[
i
]
dx1
,
dy1
=
dul
[
i
]
dx2
,
dy2
=
dbr
[
i
]
dx2
,
dy2
=
dbr
[
i
]
sx1
,
sy1
=
sul
[
i
]
sx1
,
sy1
=
sul
[
i
]
...
@@ -551,13 +555,16 @@ class TopDownAffine(object):
...
@@ -551,13 +555,16 @@ class TopDownAffine(object):
rot
=
records
[
'rotate'
]
if
"rotate"
in
records
else
0
rot
=
records
[
'rotate'
]
if
"rotate"
in
records
else
0
trans
=
get_affine_transform
(
records
[
'center'
],
records
[
'scale'
]
*
200
,
trans
=
get_affine_transform
(
records
[
'center'
],
records
[
'scale'
]
*
200
,
rot
,
self
.
trainsize
)
rot
,
self
.
trainsize
)
trans_joint
=
get_affine_transform
(
records
[
'center'
],
records
[
'scale'
]
*
200
,
rot
,
[
self
.
trainsize
[
0
]
/
4
,
self
.
trainsize
[
1
]
/
4
])
image
=
cv2
.
warpAffine
(
image
=
cv2
.
warpAffine
(
image
,
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
flags
=
cv2
.
INTER_LINEAR
)
for
i
in
range
(
joints
.
shape
[
0
]):
for
i
in
range
(
joints
.
shape
[
0
]):
if
joints_vis
[
i
,
0
]
>
0.0
:
if
joints_vis
[
i
,
0
]
>
0.0
:
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans
)
joints
[
i
,
0
:
2
]
=
affine_transform
(
joints
[
i
,
0
:
2
],
trans
_joint
)
records
[
'image'
]
=
image
records
[
'image'
]
=
image
records
[
'joints'
]
=
joints
records
[
'joints'
]
=
joints
...
@@ -628,8 +635,8 @@ class ToHeatmapsTopDown(object):
...
@@ -628,8 +635,8 @@ class ToHeatmapsTopDown(object):
tmp_size
=
self
.
sigma
*
3
tmp_size
=
self
.
sigma
*
3
for
joint_id
in
range
(
num_joints
):
for
joint_id
in
range
(
num_joints
):
feat_stride
=
image_size
/
self
.
hmsize
feat_stride
=
image_size
/
self
.
hmsize
mu_x
=
int
(
joints
[
joint_id
][
0
]
/
feat_stride
[
0
]
+
0.5
)
mu_x
=
int
(
joints
[
joint_id
][
0
]
+
0.5
)
mu_y
=
int
(
joints
[
joint_id
][
1
]
/
feat_stride
[
1
]
+
0.5
)
mu_y
=
int
(
joints
[
joint_id
][
1
]
+
0.5
)
# Check that any part of the gaussian is in-bounds
# Check that any part of the gaussian is in-bounds
ul
=
[
int
(
mu_x
-
tmp_size
),
int
(
mu_y
-
tmp_size
)]
ul
=
[
int
(
mu_x
-
tmp_size
),
int
(
mu_y
-
tmp_size
)]
br
=
[
int
(
mu_x
+
tmp_size
+
1
),
int
(
mu_y
+
tmp_size
+
1
)]
br
=
[
int
(
mu_x
+
tmp_size
+
1
),
int
(
mu_y
+
tmp_size
+
1
)]
...
@@ -662,3 +669,58 @@ class ToHeatmapsTopDown(object):
...
@@ -662,3 +669,58 @@ class ToHeatmapsTopDown(object):
del
records
[
'joints'
],
records
[
'joints_vis'
]
del
records
[
'joints'
],
records
[
'joints_vis'
]
return
records
return
records
@
register_keypointop
class
ToHeatmapsTopDown_DARK
(
object
):
"""to generate the gaussin heatmaps of keypoint for heatmap loss
Args:
hmsize (list): [w, h] output heatmap's size
sigma (float): the std of gaussin kernel genereted
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the heatmaps used to heatmaploss
"""
def
__init__
(
self
,
hmsize
,
sigma
):
super
(
ToHeatmapsTopDown_DARK
,
self
).
__init__
()
self
.
hmsize
=
np
.
array
(
hmsize
)
self
.
sigma
=
sigma
def
__call__
(
self
,
records
):
joints
=
records
[
'joints'
]
joints_vis
=
records
[
'joints_vis'
]
num_joints
=
joints
.
shape
[
0
]
target_weight
=
np
.
ones
((
num_joints
,
1
),
dtype
=
np
.
float32
)
target_weight
[:,
0
]
=
joints_vis
[:,
0
]
target
=
np
.
zeros
(
(
num_joints
,
self
.
hmsize
[
1
],
self
.
hmsize
[
0
]),
dtype
=
np
.
float32
)
tmp_size
=
self
.
sigma
*
3
for
joint_id
in
range
(
num_joints
):
mu_x
=
joints
[
joint_id
][
0
]
mu_y
=
joints
[
joint_id
][
1
]
# Check that any part of the gaussian is in-bounds
ul
=
[
int
(
mu_x
-
tmp_size
),
int
(
mu_y
-
tmp_size
)]
br
=
[
int
(
mu_x
+
tmp_size
+
1
),
int
(
mu_y
+
tmp_size
+
1
)]
if
ul
[
0
]
>=
self
.
hmsize
[
0
]
or
ul
[
1
]
>=
self
.
hmsize
[
1
]
or
br
[
0
]
<
0
or
br
[
1
]
<
0
:
# If not, just return the image as is
target_weight
[
joint_id
]
=
0
continue
x
=
np
.
arange
(
0
,
self
.
hmsize
[
0
],
1
,
np
.
float32
)
y
=
np
.
arange
(
0
,
self
.
hmsize
[
1
],
1
,
np
.
float32
)
y
=
y
[:,
np
.
newaxis
]
v
=
target_weight
[
joint_id
]
if
v
>
0.5
:
target
[
joint_id
]
=
np
.
exp
(
-
(
(
x
-
mu_x
)
**
2
+
(
y
-
mu_y
)
**
2
)
/
(
2
*
self
.
sigma
**
2
))
records
[
'target'
]
=
target
records
[
'target_weight'
]
=
target_weight
del
records
[
'joints'
],
records
[
'joints_vis'
]
return
records
ppdet/modeling/architectures/keypoint_hrnet.py
浏览文件 @
37962dcb
...
@@ -19,6 +19,7 @@ from __future__ import print_function
...
@@ -19,6 +19,7 @@ from __future__ import print_function
import
paddle
import
paddle
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
cv2
from
ppdet.core.workspace
import
register
,
create
from
ppdet.core.workspace
import
register
,
create
from
.meta_arch
import
BaseArch
from
.meta_arch
import
BaseArch
from
..keypoint_utils
import
transform_preds
from
..keypoint_utils
import
transform_preds
...
@@ -118,6 +119,9 @@ class TopDownHRNet(BaseArch):
...
@@ -118,6 +119,9 @@ class TopDownHRNet(BaseArch):
class
HRNetPostProcess
(
object
):
class
HRNetPostProcess
(
object
):
def
__init__
(
self
,
use_dark
=
True
):
self
.
use_dark
=
use_dark
def
get_max_preds
(
self
,
heatmaps
):
def
get_max_preds
(
self
,
heatmaps
):
'''get predictions from score maps
'''get predictions from score maps
...
@@ -154,7 +158,54 @@ class HRNetPostProcess(object):
...
@@ -154,7 +158,54 @@ class HRNetPostProcess(object):
return
preds
,
maxvals
return
preds
,
maxvals
def
get_final_preds
(
self
,
heatmaps
,
center
,
scale
):
def
gaussian_blur
(
self
,
heatmap
,
kernel
):
border
=
(
kernel
-
1
)
//
2
batch_size
=
heatmap
.
shape
[
0
]
num_joints
=
heatmap
.
shape
[
1
]
height
=
heatmap
.
shape
[
2
]
width
=
heatmap
.
shape
[
3
]
for
i
in
range
(
batch_size
):
for
j
in
range
(
num_joints
):
origin_max
=
np
.
max
(
heatmap
[
i
,
j
])
dr
=
np
.
zeros
((
height
+
2
*
border
,
width
+
2
*
border
))
dr
[
border
:
-
border
,
border
:
-
border
]
=
heatmap
[
i
,
j
].
copy
()
dr
=
cv2
.
GaussianBlur
(
dr
,
(
kernel
,
kernel
),
0
)
heatmap
[
i
,
j
]
=
dr
[
border
:
-
border
,
border
:
-
border
].
copy
()
heatmap
[
i
,
j
]
*=
origin_max
/
np
.
max
(
heatmap
[
i
,
j
])
return
heatmap
def
dark_parse
(
self
,
hm
,
coord
):
heatmap_height
=
hm
.
shape
[
0
]
heatmap_width
=
hm
.
shape
[
1
]
px
=
int
(
coord
[
0
])
py
=
int
(
coord
[
1
])
if
1
<
px
<
heatmap_width
-
2
and
1
<
py
<
heatmap_height
-
2
:
dx
=
0.5
*
(
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
])
dy
=
0.5
*
(
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
])
dxx
=
0.25
*
(
hm
[
py
][
px
+
2
]
-
2
*
hm
[
py
][
px
]
+
hm
[
py
][
px
-
2
])
dxy
=
0.25
*
(
hm
[
py
+
1
][
px
+
1
]
-
hm
[
py
-
1
][
px
+
1
]
-
hm
[
py
+
1
][
px
-
1
]
\
+
hm
[
py
-
1
][
px
-
1
])
dyy
=
0.25
*
(
hm
[
py
+
2
*
1
][
px
]
-
2
*
hm
[
py
][
px
]
+
hm
[
py
-
2
*
1
][
px
])
derivative
=
np
.
matrix
([[
dx
],
[
dy
]])
hessian
=
np
.
matrix
([[
dxx
,
dxy
],
[
dxy
,
dyy
]])
if
dxx
*
dyy
-
dxy
**
2
!=
0
:
hessianinv
=
hessian
.
I
offset
=
-
hessianinv
*
derivative
offset
=
np
.
squeeze
(
np
.
array
(
offset
.
T
),
axis
=
0
)
coord
+=
offset
return
coord
def
dark_postprocess
(
self
,
hm
,
coords
,
kernelsize
):
hm
=
self
.
gaussian_blur
(
hm
,
kernelsize
)
hm
=
np
.
maximum
(
hm
,
1e-10
)
hm
=
np
.
log
(
hm
)
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
coords
[
n
,
p
]
=
self
.
dark_parse
(
hm
[
n
][
p
],
coords
[
n
][
p
])
return
coords
def
get_final_preds
(
self
,
heatmaps
,
center
,
scale
,
kernelsize
=
3
):
"""the highest heatvalue location with a quarter offset in the
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
direction from the highest response to the second highest response.
...
@@ -173,17 +224,20 @@ class HRNetPostProcess(object):
...
@@ -173,17 +224,20 @@ class HRNetPostProcess(object):
heatmap_height
=
heatmaps
.
shape
[
2
]
heatmap_height
=
heatmaps
.
shape
[
2
]
heatmap_width
=
heatmaps
.
shape
[
3
]
heatmap_width
=
heatmaps
.
shape
[
3
]
for
n
in
range
(
coords
.
shape
[
0
]):
if
self
.
use_dark
:
for
p
in
range
(
coords
.
shape
[
1
]):
coords
=
self
.
dark_postprocess
(
heatmaps
,
coords
,
kernelsize
)
hm
=
heatmaps
[
n
][
p
]
else
:
px
=
int
(
math
.
floor
(
coords
[
n
][
p
][
0
]
+
0.5
))
for
n
in
range
(
coords
.
shape
[
0
]):
py
=
int
(
math
.
floor
(
coords
[
n
][
p
][
1
]
+
0.5
))
for
p
in
range
(
coords
.
shape
[
1
]):
if
1
<
px
<
heatmap_width
-
1
and
1
<
py
<
heatmap_height
-
1
:
hm
=
heatmaps
[
n
][
p
]
diff
=
np
.
array
([
px
=
int
(
math
.
floor
(
coords
[
n
][
p
][
0
]
+
0.5
))
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
],
py
=
int
(
math
.
floor
(
coords
[
n
][
p
][
1
]
+
0.5
))
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
]
if
1
<
px
<
heatmap_width
-
1
and
1
<
py
<
heatmap_height
-
1
:
])
diff
=
np
.
array
([
coords
[
n
][
p
]
+=
np
.
sign
(
diff
)
*
.
25
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
],
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
]
])
coords
[
n
][
p
]
+=
np
.
sign
(
diff
)
*
.
25
preds
=
coords
.
copy
()
preds
=
coords
.
copy
()
# Transform back
# Transform back
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录