Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3772d27d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3772d27d
编写于
1月 22, 2018
作者:
Z
zlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add depthwise conv forward
上级
c80af6ff
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
446 addition
and
0 deletion
+446
-0
paddle/operators/conv_op.cc
paddle/operators/conv_op.cc
+7
-0
paddle/operators/conv_op.cu.cc
paddle/operators/conv_op.cu.cc
+5
-0
paddle/operators/conv_op.h
paddle/operators/conv_op.h
+30
-0
paddle/operators/math/depthwise_conv.cu
paddle/operators/math/depthwise_conv.cu
+347
-0
paddle/operators/math/depthwise_conv.h
paddle/operators/math/depthwise_conv.h
+57
-0
未找到文件。
paddle/operators/conv_op.cc
浏览文件 @
3772d27d
...
@@ -318,9 +318,16 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
...
@@ -318,9 +318,16 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
conv2d
,
ops
::
ConvOp
,
ops
::
Conv2DOpMaker
,
conv2d_grad
,
REGISTER_OP
(
conv2d
,
ops
::
ConvOp
,
ops
::
Conv2DOpMaker
,
conv2d_grad
,
ops
::
ConvOpGrad
);
ops
::
ConvOpGrad
);
REGISTER_OP
(
depthwiseConv
,
ops
::
ConvOp
,
ops
::
Conv2DOpMaker
,
conv2d_grad
,
ops
::
ConvOpGrad
);
REGISTER_OP
(
conv3d
,
ops
::
ConvOp
,
ops
::
Conv3DOpMaker
,
conv3d_grad
,
REGISTER_OP
(
conv3d
,
ops
::
ConvOp
,
ops
::
Conv3DOpMaker
,
conv3d_grad
,
ops
::
ConvOpGrad
);
ops
::
ConvOpGrad
);
REGISTER_OP_CPU_KERNEL
(
depthwiseConv
,
ops
::
DepthwiseConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
DepthwiseConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
...
...
paddle/operators/conv_op.cu.cc
浏览文件 @
3772d27d
...
@@ -16,6 +16,11 @@ limitations under the License. */
...
@@ -16,6 +16,11 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
depthwiseConv
,
ops
::
DepthwiseConvKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
DepthwiseConvKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
GemmConvKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
...
...
paddle/operators/conv_op.h
浏览文件 @
3772d27d
...
@@ -16,6 +16,7 @@ limitations under the License. */
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/depthwise_conv.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"
#include "paddle/operators/math/vol2col.h"
...
@@ -350,5 +351,34 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -350,5 +351,34 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
}
}
}
}
};
};
template
<
typename
DeviceContext
,
typename
T
>
class
DepthwiseConvKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
math
::
DepthwiseConvFunctor
<
DeviceContext
,
T
>
depthwiseConv
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
depthwiseConv
(
dev_ctx
,
input
,
filter
,
filter_shape_vec
,
strides
,
paddings
,
output
);
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/operators/math/depthwise_conv.cu
0 → 100644
浏览文件 @
3772d27d
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/pooling.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
// CUDA kernel to compute the depthwise convolution forward pass
template
<
typename
T
>
__global__
void
KernelDepthwiseConv
(
const
int
nthreads
,
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
const
output_data
)
{
int
index
=
(
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
)
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
const
int
batch
=
index
/
output_channels
/
output_height
/
output_width
;
const
int
c_out
=
(
index
/
output_height
/
output_width
)
%
output_channels
;
const
int
h_out
=
(
index
/
output_width
)
%
output_height
;
const
int
w_out
=
index
%
output_width
;
const
int
c_in
=
c_out
/
filter_multiplier
;
const
T
*
weight
=
filter_data
+
c_out
*
filter_height
*
filter_width
;
T
value
=
0
;
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
-
padding_height
+
h_out
*
stride_height
+
filter_height
-
1
;
const
int
w_in_end
=
-
padding_width
+
w_out
*
stride_width
+
filter_width
-
1
;
if
((
h_in_start
>=
0
)
&&
(
h_in_end
<
input_height
)
&&
(
w_in_start
>=
0
)
&&
(
w_in_end
<
input_width
))
{
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
const
int
h_in
=
-
padding_height
+
h_out
*
stride_height
+
kh
;
const
int
w_in
=
-
padding_width
+
w_out
*
stride_width
+
kw
;
const
int
offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
value
+=
(
*
weight
)
*
input_data
[
offset
];
++
weight
;
}
}
}
else
{
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
const
int
h_in
=
-
padding_height
+
h_out
*
stride_height
+
kh
;
const
int
w_in
=
-
padding_width
+
w_out
*
stride_width
+
kw
;
if
((
h_in
>=
0
)
&&
(
h_in
<
input_height
)
&&
(
w_in
>=
0
)
&&
(
w_in
<
input_width
))
{
const
int
offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
value
+=
(
*
weight
)
*
input_data
[
offset
];
}
++
weight
;
}
}
}
output_data
[
index
]
=
value
;
}
}
/*
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
template <typename T>
__global__ void KernelDepthwiseConvInputGrad(const int nthreads,
const T* const top_diff,
const T* const weight_data,
const int num,
const int outputChannels,
const int outputHeight,
const int outputWidth,
const int inputChannels,
const int inputHeight,
const int inputWidth,
const int filterMultiplier,
const int filterHeight,
const int filterWidth,
const int strideH,
const int strideW,
const int paddingH,
const int paddingW,
T* const bottom_diff) {
int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < nthreads) {
const int batch = index / inputChannels / inputHeight / inputWidth;
const int c_in = (index / inputHeight / inputWidth) % inputChannels;
const int h_in = (index / inputWidth) % inputHeight;
const int w_in = index % inputWidth;
const int c_out_start = c_in * filterMultiplier;
int h_out_start = (h_in - filterHeight + paddingH + strideH) / strideH;
h_out_start = 0 > h_out_start ? 0 : h_out_start;
int h_out_end = (h_in + paddingH) / strideH;
h_out_end = outputHeight - 1 < h_out_end ? outputHeight - 1 : h_out_end;
int w_out_start = (w_in - filterWidth + paddingW + strideW) / strideW;
w_out_start = 0 > w_out_start ? 0 : w_out_start;
int w_out_end = (w_in + paddingW) / strideW;
w_out_end = outputWidth - 1 < w_out_end ? outputWidth - 1 : w_out_end;
T value = 0;
for (int c_out = c_out_start; c_out < c_out_start + filterMultiplier;
c_out++) {
for (int h_out = h_out_start; h_out <= h_out_end; ++h_out) {
const int filter_h = h_in + paddingH - h_out * strideH;
for (int w_out = w_out_start; w_out <= w_out_end; ++w_out) {
const int filter_w = w_in + paddingW - w_out * strideW;
const int filter_offset = c_out * filterHeight * filterWidth +
filter_h * filterWidth + filter_w;
const int top_diff_offset =
((batch * outputChannels + c_out) * outputHeight + h_out) *
outputWidth +
w_out;
value += top_diff[top_diff_offset] * weight_data[filter_offset];
}
}
}
bottom_diff[index] += value;
}
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t filter.
template <typename T>
__global__ void KernelDepthwiseConvFilterGrad(const int num_i,
const int nthreads,
const T* const top_diff,
const T* const inputData,
const int num,
const int outputChannels,
const int outputHeight,
const int outputWidth,
const int inputChannels,
const int inputHeight,
const int inputWidth,
const int filterMultiplier,
const int filterHeight,
const int filterWidth,
const int strideH,
const int strideW,
const int paddingH,
const int paddingW,
T* const buffer_data) {
int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
if (index < nthreads) {
const int h_out = (index / outputWidth) % outputHeight;
const int w_out = index % outputWidth;
const int kh =
(index / filterWidth / outputHeight / outputWidth) % filterHeight;
const int kw = (index / outputHeight / outputWidth) % filterWidth;
const int h_in = -paddingH + h_out * strideH + kh;
const int w_in = -paddingW + w_out * strideW + kw;
if ((h_in >= 0) && (h_in < inputHeight) && (w_in >= 0) &&
(w_in < inputWidth)) {
const int c_out =
index / (filterHeight * filterWidth * outputHeight * outputWidth);
const int c_in = c_out / filterMultiplier;
const int batch = num_i;
const int top_offset =
((batch * outputChannels + c_out) * outputHeight + h_out) *
outputWidth + w_out;
const int bottom_offset =
((batch * inputChannels + c_in) * inputHeight + h_in) * inputWidth +
w_in;
buffer_data[index] = top_diff[top_offset] * inputData[bottom_offset];
} else {
buffer_data[index] = 0;
}
}
}
*/
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
DepthwiseConvFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
const
int
ksize_width
=
ksize
[
1
];
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
filter_data
=
filter
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelDepthwiseConv
<
T
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
nthreads
,
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_channels
/
input_channels
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_data
);
}
};
/*
template <typename T>
class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, PoolProcess, T>
{
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_process, framework::Tensor* input_grad) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_height = output.dims()[2];
const int output_width = output.dims()[3];
const int ksize_height = ksize[0];
const int ksize_width = ksize[1];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const T* input_data = input.data<T>();
const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
int nthreads = batch_size * input_channels * input_height * input_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelPool2DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
nthreads, input_data, output_data, output_grad_data, input_channels,
input_height, input_width, output_height, output_width, ksize_height,
ksize_width, stride_height, stride_width, padding_height, padding_width,
pool_process, input_grad_data);
}
};
template <typename T>
class DepthwiseConvdFilterGradFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = output.dims()[1];
const int output_height = output.dims()[2];
const int output_width = output.dims()[3];
const int ksize_height = ksize[0];
const int ksize_width = ksize[1];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const T* input_data = input.data<T>();
const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
int nthreads = batch_size * output_channels * output_height * output_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelMaxPool2DGrad<T><<<grid, threads, 0, context.stream()>>>(
nthreads, input_data, output_data, output_grad_data, input_channels,
input_height, input_width, output_height, output_width, ksize_height,
ksize_width, stride_height, stride_width, padding_height, padding_width,
input_grad_data);
}
};
*/
template
class
DepthwiseConvFunctor
<
platform
::
CUDADeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
float
>,
float
>
;
/*
template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
paddle::operators::math::MaxPoolGrad<float>,
float>;
template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
paddle::operators::math::MaxPoolGrad<float>,
float>;
template class DepthwiseConvFunctor<platform::CUDADeviceContext,
paddle::operators::math::MaxPool<double>, double>;
template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
paddle::operators::math::MaxPoolGrad<double>,
double>;
template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
paddle::operators::math::MaxPoolGrad<double>,
double>;
*/
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/depthwise_conv.h
0 → 100644
浏览文件 @
3772d27d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
DeviceContext
,
typename
T
>
class
DepthwiseConvFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
filter
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
);
};
/*
template <typename DeviceContext, typename T>
class DepthwiseConvInputGradFunctor {
public:
void operator()(const DeviceContext& context,
const framework::Tensor& filter,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
};
template <typename DeviceContext, typename T>
class DepthwiseConvFilterGradFunctor {
public:
void operator()(const DeviceContext& context,
const framework::Tensor& input,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* filter_grad);
};
*/
}
// namespace math
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录