未验证 提交 36b8e574 编写于 作者: K Kaipeng Deng 提交者: GitHub

Cherry ppyolo cocotest (#1101)

* add COCO test-dev eval config and doc
上级 8551de92
......@@ -20,7 +20,7 @@ addons:
before_install:
- sudo pip install -U virtualenv pre-commit pip
- docker pull paddlepaddle/paddle:latest
- git pull https://github.com/PaddlePaddle/PaddleDetection master -r
- git pull https://github.com/PaddlePaddle/PaddleDetection release/0.4 -r
script:
- exit_code=0
......
......@@ -11,7 +11,7 @@
[PP-YOLO](https://arxiv.org/abs/2007.12099)的PaddleDetection优化和改进的YOLOv3的模型,其精度(COCO数据集mAP)和推理速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)模型,要求使用PaddlePaddle 1.8.4(2020年8月中旬发布)或适当的[develop版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev)
PP-YOLO在[COCO](http://cocodataset.org) test2019数据集上精度达到45.2%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。
PP-YOLO在[COCO](http://cocodataset.org) test-dev2019数据集上精度达到45.2%,在单卡V100上FP32推理速度为72.9 FPS, V100上开启TensorRT下FP16推理速度为155.6 FPS。
<div align="center">
<img src="../../docs/images/ppyolo_map_fps.png" width=500 />
......@@ -45,7 +45,7 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度:
**注意:**
- PP-YOLO模型使用COCO数据集中train2017作为训练集,使用test2019左右测试集。
- PP-YOLO模型使用COCO数据集中train2017作为训练集,使用test-dev2019左右测试集。
- PP-YOLO模型训练过程中使用8GPU,每GPU batch size为24进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](../../docs/FAQ.md)调整学习率和迭代次数。
- PP-YOLO模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.5.1,TensorRT推理速度测试使用TensorRT 5.1.2.2。
- PP-YOLO模型推理速度测试数据为使用`tools/export_model.py`脚本导出模型后,使用`deploy/python/infer.py`脚本中的`--run_benchnark`参数使用Paddle预测库进行推理速度benchmark测试结果, 且测试的均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。
......@@ -66,7 +66,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppy
### 2. 评估
使用单GPU通过如下命令一键式评估模型效果
使用单GPU通过如下命令一键式评估模型在COCO val2017数据集效果
```bash
# 使用PaddleDetection发布的权重
......@@ -76,6 +76,20 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weig
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=output/ppyolo/best_model
```
我们提供了`configs/ppyolo/ppyolo_test.yml`用于评估COCO test-dev2019数据集的效果,评估COCO test-dev2019数据集的效果须先从[COCO数据集下载页](https://cocodataset.org/#download)下载test-dev2019数据集,解压到`configs/ppyolo/ppyolo_test.yml``EvalReader.dataset`中配置的路径,并使用如下命令进行评估
```bash
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo/best_model
```
评估结果保存于`bbox.json`中,将其压缩为zip包后通过[COCO数据集评估页](https://competitions.codalab.org/competitions/20794#participate)提交评估。
**注意:** `configs/ppyolo/ppyolo_test.yml`仅用于评估COCO test-dev数据集,不用于训练和评估COCO val2017数据集。
### 3. 推理
使用单GPU通过如下命令一键式推理图像,通过`--infer_img`指定图像路径,或通过`--infer_dir`指定目录并推理目录下所有图像
......
# NOTE: this config file is only used for evaluation on COCO test2019 set,
# for training or evaluationg on COCO val2017, please use ppyolo.yml
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
weights: output/ppyolo/model_final
num_classes: 80
use_fine_grained_loss: true
use_ema: true
ema_decay: 0.9998
save_prediction_only: True
YOLOv3:
backbone: ResNet
yolo_head: YOLOv3Head
use_fine_grained_loss: true
ResNet:
norm_type: sync_bn
freeze_at: 0
freeze_norm: false
norm_decay: 0.
depth: 50
feature_maps: [3, 4, 5]
variant: d
dcn_v2_stages: [5]
YOLOv3Head:
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
norm_decay: 0.
coord_conv: true
iou_aware: true
iou_aware_factor: 0.4
scale_x_y: 1.05
spp: true
yolo_loss: YOLOv3Loss
nms: MatrixNMS
drop_block: true
YOLOv3Loss:
batch_size: 24
ignore_thresh: 0.7
scale_x_y: 1.05
label_smooth: false
use_fine_grained_loss: true
iou_loss: IouLoss
iou_aware_loss: IouAwareLoss
IouLoss:
loss_weight: 2.5
max_height: 608
max_width: 608
IouAwareLoss:
loss_weight: 1.0
max_height: 608
max_width: 608
MatrixNMS:
background_label: -1
keep_top_k: 100
normalized: false
score_threshold: 0.01
post_threshold: 0.01
LearningRate:
base_lr: 0.00333
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 400000
- 450000
- !LinearWarmup
start_factor: 0.
steps: 4000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
_READER_: 'ppyolo_reader.yml'
EvalReader:
inputs_def:
fields: ['image', 'im_size', 'im_id']
num_max_boxes: 90
dataset:
!COCODataSet
image_dir: test2017
anno_path: annotations/image_info_test-dev2017.json
dataset_dir: dataset/coco
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
- !ResizeImage
target_size: 608
interp: 1
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 1
TestReader:
dataset:
!ImageFolder
use_default_label: true
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
- !ResizeImage
target_size: 608
interp: 1
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
......@@ -182,8 +182,8 @@ class IouLoss(object):
dcx_sig = fluid.layers.sigmoid(dcx)
dcy_sig = fluid.layers.sigmoid(dcy)
if (abs(scale_x_y - 1.0) > eps):
dcx_sig = scale_x_y * dcx_sig - 0.5 * (scale_x_y - 1)
dcy_sig = scale_x_y * dcy_sig - 0.5 * (scale_x_y - 1)
dcx_sig = scale_x_y * dcx_sig - 0.5 * (scale_x_y - 1)
dcy_sig = scale_x_y * dcy_sig - 0.5 * (scale_x_y - 1)
cx = fluid.layers.elementwise_add(dcx_sig, gi) / grid_x_act
cy = fluid.layers.elementwise_add(dcy_sig, gj) / grid_y_act
......
......@@ -91,8 +91,15 @@ class YOLOv3Loss(object):
return {'loss': sum(losses)}
def _get_fine_grained_loss(self, outputs, targets, gt_box, batch_size,
num_classes, mask_anchors, ignore_thresh, eps=1.e-10):
def _get_fine_grained_loss(self,
outputs,
targets,
gt_box,
batch_size,
num_classes,
mask_anchors,
ignore_thresh,
eps=1.e-10):
"""
Calculate fine grained YOLOv3 loss
......@@ -148,8 +155,10 @@ class YOLOv3Loss(object):
y, ty) * tscale_tobj
loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])
else:
dx = scale_x_y * fluid.layers.sigmoid(x) - 0.5 * (scale_x_y - 1.0)
dy = scale_x_y * fluid.layers.sigmoid(y) - 0.5 * (scale_x_y - 1.0)
dx = scale_x_y * fluid.layers.sigmoid(x) - 0.5 * (scale_x_y -
1.0)
dy = scale_x_y * fluid.layers.sigmoid(y) - 0.5 * (scale_x_y -
1.0)
loss_x = fluid.layers.abs(dx - tx) * tscale_tobj
loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
loss_y = fluid.layers.abs(dy - ty) * tscale_tobj
......@@ -162,7 +171,8 @@ class YOLOv3Loss(object):
loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])
if self._iou_loss is not None:
loss_iou = self._iou_loss(x, y, w, h, tx, ty, tw, th, anchors,
downsample, self._batch_size, scale_x_y)
downsample, self._batch_size,
scale_x_y)
loss_iou = loss_iou * tscale_tobj
loss_iou = fluid.layers.reduce_sum(loss_iou, dim=[1, 2, 3])
loss_ious.append(fluid.layers.reduce_mean(loss_iou))
......@@ -304,7 +314,7 @@ class YOLOv3Loss(object):
downsample_ratio=downsample,
clip_bbox=False,
scale_x_y=scale_x_y)
# 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
# and gt bbox in each sample
if batch_size > 1:
......@@ -333,17 +343,17 @@ class YOLOv3Loss(object):
pred = fluid.layers.squeeze(pred, axes=[0])
gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0]))
ious.append(fluid.layers.iou_similarity(pred, gt))
iou = fluid.layers.stack(ious, axis=0)
# 3. Get iou_mask by IoU between gt bbox and prediction bbox,
# Get obj_mask by tobj(holds gt_score), calculate objectness loss
max_iou = fluid.layers.reduce_max(iou, dim=-1)
iou_mask = fluid.layers.cast(max_iou <= ignore_thresh, dtype="float32")
if self.match_score:
max_prob = fluid.layers.reduce_max(prob, dim=-1)
iou_mask = iou_mask * fluid.layers.cast(
max_prob <= 0.25, dtype="float32")
max_prob <= 0.25, dtype="float32")
output_shape = fluid.layers.shape(output)
an_num = len(anchors) // 2
iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册