Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3693394c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3693394c
编写于
7月 25, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
hidden slice_vars in distribute transpile, hidden it to users
上级
2c05e37a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
87 addition
and
45 deletion
+87
-45
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+87
-45
未找到文件。
python/paddle/fluid/trainer.py
浏览文件 @
3693394c
...
...
@@ -134,8 +134,6 @@ class CheckpointConfig(object):
self
.
epoch_id
=
0
self
.
step_id
=
0
self
.
load_serial
=
None
self
.
pserver_id
=
None
self
.
lookup_table_name
=
None
def
check_and_get_place
(
place
):
...
...
@@ -351,11 +349,9 @@ class Trainer(object):
t
.
transpile
(
self
.
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
if
self
.
checkpoint_cfg
:
pserver_id
=
eplist
.
index
(
current_endpoint
)
self
.
checkpoint_cfg
.
pserver_id
=
pserver_id
if
t
.
has_distributed_lookup_table
:
self
.
checkpoint_cfg
.
lookup_table_name
=
t
.
table_name
self
.
pserver_id
=
eplist
.
index
(
current_endpoint
)
self
.
pserver_endpoints
=
pserver_endpoints
self
.
lookup_table_name
=
t
.
table_name
if
t
.
has_distributed_lookup_table
else
None
self
.
train_program
=
t
.
get_pserver_program
(
current_endpoint
)
self
.
startup_program
=
t
.
get_startup_program
(
current_endpoint
,
...
...
@@ -417,6 +413,11 @@ class Trainer(object):
def
save_params
(
self
,
param_path
):
"""
Save all parameters into :code:`param_path`.
Only No.0 trainer will save dense params.
In standalone PaddlePaddle, the only existing trainer will save dense params.
In distributed PaddlePaddle, the No.0 trainer will save dense params,
If there have lookup table need to save, No.0 trainer will broadcast notification
to all Parameter Servers to save it on Parameter Servers independent.
Args:
param_path(str): The path to save parameters.
...
...
@@ -424,9 +425,19 @@ class Trainer(object):
Returns:
None
"""
if
self
.
trainer_id
!=
0
:
return
with
self
.
_prog_and_scope_guard
():
# save params on trainer
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
# save params on pserver
if
self
.
lookup_table_name
:
_save_pserver_vars_by_notify
(
exe
,
param_path
,
self
.
lookup_table_name
,
self
.
pserver_endpoints
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
...
...
@@ -560,15 +571,16 @@ class Trainer(object):
if
epoch_id
%
self
.
checkpoint_cfg
.
epoch_interval
==
0
\
and
step_id
%
self
.
checkpoint_cfg
.
step_interval
==
0
:
print
(
"_save_checkpoint ..."
)
exe
=
executor
.
Executor
(
self
.
place
)
save_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
trainer_id
=
self
.
trainer_id
,
trainer_args
=
self
.
_get_checkpoint_save_args
(
epoch_id
,
step_id
),
main_program
=
self
.
train_program
,
trainer_id
=
self
.
trainer_id
,
save_trainer_args
=
self
.
_get_checkpoint_save_args
(
epoch_id
,
step_id
),
save_lookup_table
=
self
.
lookup_table_name
,
pserver_endpoints
=
self
.
pserver_endpoints
,
max_num_checkpoints
=
self
.
checkpoint_cfg
.
max_num_checkpoints
)
def
_load_checkpoint
(
self
):
...
...
@@ -579,7 +591,7 @@ class Trainer(object):
self
.
checkpoint_cfg
.
load_serial
)
# Trainer Load
if
self
.
checkpoint_cfg
.
pserver_id
is
None
:
if
self
.
pserver_id
is
None
:
# load model
load_checkpoint
(
executor
=
exe
,
...
...
@@ -608,15 +620,25 @@ class Trainer(object):
# Pserver Load
else
:
# load model
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
pserver_id
,
is_trainer
=
False
,
load_models
=
True
,
load_lookup_table
=
self
.
lookup_table_name
)
# load lookup table
if
self
.
checkpoint_cfg
.
lookup_table_name
:
if
self
.
lookup_table_name
:
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
checkpoint_cfg
.
pserver_id
,
role_id
=
self
.
pserver_id
,
is_trainer
=
False
,
load_lookup_table
=
self
.
checkpoint_cfg
.
lookup_table_name
)
load_lookup_table
=
self
.
lookup_table_name
)
def
build_feed_var_list
(
program
,
feed_order
):
...
...
@@ -813,13 +835,21 @@ def load_checkpoint(executor,
if
is_trainer
:
if
load_models
:
_load_persistable_vars
(
executor
,
checkpoint_dir
,
main_program
,
True
)
return
if
load_trainer_args
:
trainer_args_ret
=
_load_trainer_args
(
checkpoint_dir
,
role_id
,
load_trainer_args
)
return
trainer_args_ret
# pserver load
else
:
if
load_models
:
if
load_lookup_table
:
_load_persistable_vars
(
executor
,
checkpoint_dir
,
main_program
,
True
,
[
load_lookup_table
])
else
:
_load_persistable_vars
(
executor
,
checkpoint_dir
,
main_program
,
True
)
if
load_lookup_table
:
_load_lookup_table_vars
(
executor
,
checkpoint_dir
,
main_program
,
role_id
,
load_lookup_table
)
...
...
@@ -843,7 +873,11 @@ def clean_checkpoint(checkpoint_dir, delete_dir=False):
os
.
rmdir
(
checkpoint_dir
)
def
_load_persistable_vars
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
def
_load_persistable_vars
(
executor
,
dirname
,
program
,
has_model_dir
=
False
,
except_vars
=
None
):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
...
...
@@ -888,7 +922,7 @@ def _load_persistable_vars(executor, dirname, program, has_model_dir=False):
executor
,
dirname
=
dirname
,
main_program
=
program
,
predicate
=
_is_checkpoint_var
,
predicate
=
_is_checkpoint_var
(
except_vars
)
,
filename
=
None
)
...
...
@@ -983,13 +1017,13 @@ def _save_persistable_vars(executor, dirname, program):
dirname
=
cur_dir
,
main_program
=
program
,
vars
=
None
,
predicate
=
_is_checkpoint_var
,
predicate
=
_is_checkpoint_var
()
,
filename
=
None
)
_write_success
(
cur_dir
)
def
_save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps
_endpoint_list
):
ps
erver_endpoints
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
...
...
@@ -1002,8 +1036,8 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps
_endpoint_list
(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps
_endpoint_list
by
ps
erver_endpoints
(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps
erver_endpoints
by
distribute arguments.
Return:
None
...
...
@@ -1027,7 +1061,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
checkpoint_notify_block
=
checkpoint_notify_program
.
global_block
()
attrs
=
{}
attrs
[
'epmap'
]
=
ps
_endpoint_list
attrs
[
'epmap'
]
=
ps
erver_endpoints
.
split
(
","
)
attrs
[
'dir'
]
=
cur_dir
attrs
[
'lookup_table'
]
=
lookup_table
...
...
@@ -1086,29 +1120,37 @@ def _load_trainer_args(checkpoint_dir, trainer_id, trainer_args):
return
ret_values
def
_is_checkpoint_var
(
var
):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
def
_is_checkpoint_var
(
except_vars
=
None
):
except_vars
=
[]
if
except_vars
is
None
else
except_vars
: param var(Variable)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
return
var
.
persistable
def
_except_vars
(
var
):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FETCH_LIST
or
\
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
RAW
:
return
False
# @GRAD are named for gradient variables, checkpoint will not save it.
if
"@GRAD"
in
var
.
name
:
return
False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if
".trainer_"
in
var
.
name
:
return
False
# .block is named for distribute train variables, checkpoint will not save it.
if
".block"
in
var
.
name
:
return
False
if
var
in
except_vars
:
return
False
return
var
.
persistable
return
_except_vars
def
_make_chekcpoint_dirs
(
dirs
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录