Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
367a54e0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
367a54e0
编写于
9月 26, 2017
作者:
Y
Yibing Liu
提交者:
GitHub
9月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4360 from kuke/multiplex_modify_dev
Modify multiplex_op
上级
aef71a6e
e9dbc85b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
77 addition
and
63 deletion
+77
-63
paddle/operators/multiplex_op.cc
paddle/operators/multiplex_op.cc
+34
-28
paddle/operators/multiplex_op.cu
paddle/operators/multiplex_op.cu
+23
-20
paddle/operators/multiplex_op.h
paddle/operators/multiplex_op.h
+13
-10
python/paddle/v2/framework/tests/test_multiplex_op.py
python/paddle/v2/framework/tests/test_multiplex_op.py
+7
-5
未找到文件。
paddle/operators/multiplex_op.cc
浏览文件 @
367a54e0
...
...
@@ -18,7 +18,6 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
class
MultiplexOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -26,24 +25,31 @@ class MultiplexOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Ids"
),
"Input(Ids) shouldn't be null."
);
PADDLE_ENFORCE
(
!
ctx
.
MultiInputVar
(
"X"
).
empty
(),
"
Input(X) should not be null
"
);
"
MultiInput(X) shouldn't be empty.
"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Out"
),
"Output(Out) shouldn't be null."
);
auto
ids_dim
=
ctx
.
Input
<
Tensor
>
(
"Ids"
)
->
dims
();
PADDLE_ENFORCE
(
ids_dim
.
size
()
==
2
&&
ids_dim
[
1
]
==
1
,
"The index tensor must be a vector with size batchSize x 1."
);
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
LoD
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
num_ins
=
ins
.
size
();
PADDLE_ENFORCE
(
num_ins
>
2
,
"multiplex operator should have more than 2 inputs."
);
PADDLE_ENFORCE_EQ
(
ins
[
0
]
->
dims
().
size
(),
1
,
"The first input must be a index vector."
);
auto
in_dim
=
ins
[
1
]
->
dims
();
for
(
size_t
i
=
2
;
i
<
num_ins
;
i
++
)
{
PADDLE_ENFORCE
(
num_ins
>
1
,
"multiplex operator should have more than "
"one candidate input tensors."
);
auto
in_dim
=
ins
[
0
]
->
dims
();
PADDLE_ENFORCE
(
in_dim
.
size
()
>=
2
,
"The rank of candidate tensors must be not less than 2."
);
for
(
size_t
i
=
1
;
i
<
num_ins
;
i
++
)
{
auto
dim
=
ins
[
i
]
->
dims
();
PADDLE_ENFORCE
(
in_dim
==
dim
,
"All the input tensors except the first one must have the same size"
);
PADDLE_ENFORCE
(
in_dim
==
dim
,
"All the candidate tensors must have the same size."
);
}
out
->
Resize
(
in_dim
);
}
...
...
@@ -54,25 +60,25 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
MultiplexOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensors of multiplex operator."
).
AsDuplicable
();
AddInput
(
"Ids"
,
"The index tensor of multiplex operator."
);
AddInput
(
"X"
,
"The candidate tensors of multiplex operator."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddComment
(
R"DOC(Multiplex operator
Multiplex multiple tensors according to the index provided by the first
input tensor.
Multiplex multiple tensors according to the index provided by the index tensor.
ins[0]
: the index tensor.
ins[1:N]: the candidate output tensors
.
Ids
: the index tensor.
X[0 : N - 1]: the candidate tensors for output (N >= 2)
.
For each index i from 0 to batchSize - 1, the output is the i-th row of the
the (
index[i] + 1
)-th tensor.
the (
Ids[i]
)-th tensor.
For i-th row of the output tensor:
y[i]
[j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1)
y[i]
= x_{k}[i]
where y is the output tensor. `x_{k}` is the k-th input tensor
and `k = x{0}[i] + 1`.
and `k = Ids[i]`.
)DOC"
);
}
};
...
...
@@ -84,15 +90,15 @@ class MultiplexGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
!
ctx
.
MultiInputVar
(
"X"
).
empty
(),
"Input(X) should not be null"
);
"Input(X) should not be null
.
"
);
PADDLE_ENFORCE
(
!
ctx
.
MultiOutputVar
(
framework
::
GradVarName
(
"X"
)).
empty
(),
"Output(X@Grad) should not be null"
);
"Output(X@Grad) should not be null
.
"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should
n'
t be null."
);
auto
d_ins
=
ctx
.
MultiOutput
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
"Input(Out@GRAD) should
no
t be null."
);
auto
d_ins
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
//
don't compute gradient for index (ins[0]
)
for
(
size_t
i
=
1
;
i
<
ins
.
size
();
i
++
)
{
//
No need to compute gradient for Input(Ids
)
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
d_ins
[
i
])
{
d_ins
[
i
]
->
Resize
(
ins
[
i
]
->
dims
());
}
...
...
paddle/operators/multiplex_op.cu
浏览文件 @
367a54e0
...
...
@@ -18,27 +18,30 @@
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
MultiplexGPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out
"
);
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
ids
=
ctx
.
Input
<
Tensor
>
(
"Ids
"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
]
;
auto
rows
=
ins
[
0
]
->
dims
()[
0
];
auto
cols
=
ins
[
0
]
->
numel
()
/
rows
;
// copy index to cpu
framework
::
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
<
T
>
(
*
(
ins
[
0
])
,
platform
::
CPUPlace
());
auto
*
index
=
index_t_cpu
.
data
<
T
>
();
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
<
int32_t
>
(
*
ids
,
platform
::
CPUPlace
());
auto
*
index
=
index_t_cpu
.
data
<
int32_t
>
();
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
();
Place
place
=
boost
::
get
<
Place
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
int32_t
k
=
index
[
i
];
PADDLE_ENFORCE_GE
(
k
,
0
,
"index must be nonnegative."
);
PADDLE_ENFORCE_LT
(
k
,
ins
.
size
(),
"index exceeds the number of candidate tensors."
);
memory
::
Copy
(
place
,
out
->
data
<
T
>
()
+
i
*
cols
,
place
,
...
...
@@ -51,11 +54,11 @@ template <typename Place, typename T>
class
MultiplexGradGPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
d_ins
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
for
(
size_t
i
=
1
;
i
<
d_ins
.
size
();
i
++
)
{
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
ids
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
d_ins
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
for
(
size_t
i
=
0
;
i
<
d_ins
.
size
();
i
++
)
{
if
(
d_ins
[
i
])
{
d_ins
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_ins
[
i
]);
...
...
@@ -63,19 +66,19 @@ class MultiplexGradGPUKernel : public framework::OpKernel {
}
}
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
]
;
auto
rows
=
ins
[
0
]
->
dims
()[
0
];
auto
cols
=
ins
[
0
]
->
numel
()
/
rows
;
// copy index to cpu
framework
::
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
<
T
>
(
*
(
ins
[
0
])
,
platform
::
CPUPlace
());
auto
*
index
=
index_t_cpu
.
data
<
T
>
();
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
<
int32_t
>
(
*
ids
,
platform
::
CPUPlace
());
auto
*
index
=
index_t_cpu
.
data
<
int32_t
>
();
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
();
Place
place
=
boost
::
get
<
Place
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
size_t
k
=
static_cast
<
size_t
>
(
index
[
i
])
;
if
(
d_ins
[
k
])
{
memory
::
Copy
(
place
,
d_ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
place
,
d_out
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
),
stream
);
...
...
paddle/operators/multiplex_op.h
浏览文件 @
367a54e0
...
...
@@ -27,16 +27,18 @@ class MultiplexCPUKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
ids
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ids"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
]
;
auto
*
index
=
ins
[
0
]
->
data
<
T
>
();
auto
rows
=
ins
[
0
]
->
dims
()[
0
];
auto
cols
=
ins
[
0
]
->
numel
()
/
rows
;
auto
index
=
ids
->
data
<
int32_t
>
();
Place
place
=
boost
::
get
<
Place
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
int32_t
k
=
index
[
i
];
PADDLE_ENFORCE_GE
(
k
,
0
,
"index must be nonnegative."
);
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
k
),
ins
.
size
(),
"index exceeds the number of candidate tensors."
);
memory
::
Copy
(
place
,
out
->
data
<
T
>
()
+
i
*
cols
,
place
,
...
...
@@ -50,10 +52,11 @@ class MultiplexGradCPUKernel : public framework::OpKernel {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
ids
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ids"
);
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
d_ins
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
for
(
size_t
i
=
1
;
i
<
d_ins
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
d_ins
.
size
();
i
++
)
{
if
(
d_ins
[
i
])
{
d_ins
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_ins
[
i
]);
...
...
@@ -61,12 +64,12 @@ class MultiplexGradCPUKernel : public framework::OpKernel {
}
}
auto
rows
=
ins
[
1
]
->
dims
()[
0
];
auto
cols
=
ins
[
1
]
->
dims
()[
1
]
;
auto
*
index
=
i
ns
[
0
]
->
data
<
T
>
();
auto
rows
=
ins
[
0
]
->
dims
()[
0
];
auto
cols
=
ins
[
0
]
->
numel
()
/
rows
;
auto
*
index
=
i
ds
->
data
<
int32_t
>
();
Place
place
=
boost
::
get
<
Place
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int
k
=
(
int
)
index
[
i
]
+
1
;
size_t
k
=
static_cast
<
size_t
>
(
index
[
i
])
;
if
(
d_ins
[
k
])
{
memory
::
Copy
(
place
,
d_ins
[
k
]
->
data
<
T
>
()
+
i
*
cols
,
place
,
d_out
->
data
<
T
>
()
+
i
*
cols
,
cols
*
sizeof
(
T
));
...
...
python/paddle/v2/framework/tests/test_multiplex_op.py
浏览文件 @
367a54e0
...
...
@@ -6,20 +6,22 @@ from op_test import OpTest
class
TestMultiplexOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"multiplex"
rows
=
3
index
=
np
.
array
([
3
,
1
,
0
])
rows
=
4
index
=
np
.
arange
(
0
,
rows
).
astype
(
'int32'
)
np
.
random
.
shuffle
(
index
)
index
=
np
.
reshape
(
index
,
(
rows
,
1
))
ins1
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
ins2
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
ins3
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
ins4
=
np
.
random
.
random
((
rows
,
10
)).
astype
(
"float32"
)
self
.
inputs
=
{
'
X'
:
[(
'index'
,
index
),
(
'x1'
,
ins1
),
(
'x2'
,
ins2
),
(
'x3'
,
ins3
)
,
(
'x4'
,
ins4
)]
'
Ids'
:
index
,
'X'
:
[(
'x1'
,
ins1
),
(
'x2'
,
ins2
),
(
'x3'
,
ins3
),
(
'x4'
,
ins4
)]
}
# multiplex output
output
=
np
.
zeros_like
(
ins1
)
for
i
in
range
(
0
,
rows
):
k
=
index
[
i
]
+
1
k
=
index
[
i
]
[
0
]
output
[
i
]
=
self
.
inputs
[
'X'
][
k
][
1
][
i
]
self
.
outputs
=
{
'Out'
:
output
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录