Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
366eb59c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
366eb59c
编写于
3月 23, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
3月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add prune export_model (#378)
上级
cc84b7ab
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
183 addition
and
2 deletion
+183
-2
slim/extensions/distill_pruned_model/README.md
slim/extensions/distill_pruned_model/README.md
+12
-0
slim/prune/README.md
slim/prune/README.md
+13
-1
slim/prune/eval.py
slim/prune/eval.py
+1
-1
slim/prune/export_model.py
slim/prune/export_model.py
+157
-0
未找到文件。
slim/extensions/distill_pruned_model/README.md
浏览文件 @
366eb59c
...
@@ -67,3 +67,15 @@ python ../../prune/eval.py \
...
@@ -67,3 +67,15 @@ python ../../prune/eval.py \
--pruned_ratios="0.2,0.3,0.4" \
--pruned_ratios="0.2,0.3,0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
```
## 6. 模型导出
如果想要将剪裁模型接入到C++预测库或者Serving服务,可通过
`../../prune/export_model.py`
导出该模型。
```
python ../../prune/export_model.py \
-c ../../../configs/yolov3_mobilenet_v1_voc.yml \
--pruned_params "yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights" \
--pruned_ratios="0.2,0.3,0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
slim/prune/README.md
浏览文件 @
366eb59c
...
@@ -74,7 +74,19 @@ python eval.py \
...
@@ -74,7 +74,19 @@ python eval.py \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
```
## 7. 扩展模型
## 7. 模型导出
如果想要将剪裁模型接入到C++预测库或者Serving服务,可通过
`export_model.py`
导出该模型。
```
python export_model.py \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
--pruned_params "yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights" \
--pruned_ratios="0.2,0.3,0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
## 8. 扩展模型
如果需要对自己的模型进行修改,可以参考
`prune.py`
中对
`paddleslim.prune.Pruner`
接口的调用方式,基于自己的模型训练脚本进行修改。
如果需要对自己的模型进行修改,可以参考
`prune.py`
中对
`paddleslim.prune.Pruner`
接口的调用方式,基于自己的模型训练脚本进行修改。
本节我们介绍的剪裁示例,需要用户根据先验知识指定每层的剪裁率,除此之外,PaddleSlim还提供了敏感度分析等功能,协助用户选择合适的剪裁率。更多详情请参考:
[
PaddleSlim使用文档
](
https://paddlepaddle.github.io/PaddleSlim/
)
本节我们介绍的剪裁示例,需要用户根据先验知识指定每层的剪裁率,除此之外,PaddleSlim还提供了敏感度分析等功能,协助用户选择合适的剪裁率。更多详情请参考:
[
PaddleSlim使用文档
](
https://paddlepaddle.github.io/PaddleSlim/
)
slim/prune/eval.py
浏览文件 @
366eb59c
...
@@ -176,7 +176,7 @@ def main():
...
@@ -176,7 +176,7 @@ def main():
# load model
# load model
exe
.
run
(
startup_prog
)
exe
.
run
(
startup_prog
)
if
'weights'
in
cfg
:
if
'weights'
in
cfg
:
checkpoint
.
load_
params
(
exe
,
eval_prog
,
cfg
.
weights
)
checkpoint
.
load_
checkpoint
(
exe
,
eval_prog
,
cfg
.
weights
)
results
=
eval_run
(
exe
,
compile_program
,
loader
,
keys
,
values
,
cls
,
cfg
,
results
=
eval_run
(
exe
,
compile_program
,
loader
,
keys
,
values
,
cls
,
cfg
,
sub_eval_prog
,
sub_keys
,
sub_values
)
sub_eval_prog
,
sub_keys
,
sub_values
)
...
...
slim/prune/export_model.py
0 → 100644
浏览文件 @
366eb59c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
from
paddle
import
fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
paddleslim.prune
import
Pruner
from
paddleslim.analysis
import
flops
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
list
(
test_fetches
.
values
())
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
# Use CPU for exporting inference model instead of GPU
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
inputs_def
=
cfg
[
'TestReader'
][
'inputs_def'
]
inputs_def
[
'use_dataloader'
]
=
False
feed_vars
,
_
=
model
.
build_inputs
(
**
inputs_def
)
test_fetches
=
model
.
test
(
feed_vars
)
infer_prog
=
infer_prog
.
clone
(
True
)
pruned_params
=
FLAGS
.
pruned_params
assert
(
FLAGS
.
pruned_params
is
not
None
),
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params
=
FLAGS
.
pruned_params
.
strip
().
split
(
","
)
logger
.
info
(
"pruned params: {}"
.
format
(
pruned_params
))
pruned_ratios
=
[
float
(
n
)
for
n
in
FLAGS
.
pruned_ratios
.
strip
().
split
(
","
)]
logger
.
info
(
"pruned ratios: {}"
.
format
(
pruned_ratios
))
assert
(
len
(
pruned_params
)
==
len
(
pruned_ratios
)
),
"The length of pruned params and pruned ratios should be equal."
assert
(
pruned_ratios
>
[
0
]
*
len
(
pruned_ratios
)
and
pruned_ratios
<
[
1
]
*
len
(
pruned_ratios
)
),
"The elements of pruned ratios should be in range (0, 1)."
base_flops
=
flops
(
infer_prog
)
pruner
=
Pruner
()
infer_prog
,
_
,
_
=
pruner
.
prune
(
infer_prog
,
fluid
.
global_scope
(),
params
=
pruned_params
,
ratios
=
pruned_ratios
,
place
=
place
,
only_graph
=
True
)
pruned_flops
=
flops
(
infer_prog
)
logger
.
info
(
"pruned FLOPS: {}"
.
format
(
float
(
base_flops
-
pruned_flops
)
/
base_flops
))
exe
.
run
(
startup_prog
)
checkpoint
.
load_checkpoint
(
exe
,
infer_prog
,
cfg
.
weights
)
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory for storing the output model files."
)
parser
.
add_argument
(
"-p"
,
"--pruned_params"
,
default
=
None
,
type
=
str
,
help
=
"The parameters to be pruned when calculating sensitivities."
)
parser
.
add_argument
(
"--pruned_ratios"
,
default
=
None
,
type
=
str
,
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS
=
parser
.
parse_args
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录