未验证 提交 35e07c14 编写于 作者: W wangguanzhong 提交者: GitHub

cherry-pick update qr code (#6627)

* update qq qr-code, test=document_fix

* update qq qr code, test=document_fix
上级 e3603809
......@@ -16,45 +16,37 @@
</p>
</div>
<div align="center">
<img src="docs/images/ppdet.gif" width="800"/>
</div>
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> 产品动态
- 🔥 **2022.8.01:发布[PP-TinyPose升级版](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose). 在健身、舞蹈等场景的业务数据集端到端AP提升9.1**
- 🔥 **2022.8.09:[YOLO家族全系列模型](https://github.com/nemonameless/PaddleDetection_YOLOSeries)发布**
- 全面覆盖的YOLO家族经典与最新模型: 包括YOLOv3,百度飞桨自研的实时高精度目标检测检测模型PP-YOLOE,以及前沿检测算法YOLOv4、YOLOv5、YOLOX,MT-YOLOv6及YOLOv7
- 更强的模型性能:基于各家前沿YOLO算法进行创新并升级,缩短训练周期5~8倍,精度普遍提升1%~5% mAP;使用模型压缩策略实现精度无损的同时速度提升30%以上
- 完备的端到端开发支持:支持从模型训练、评估、预测到模型量化压缩,部署多种硬件的端到端开发全流程。同时支持不同模型算法灵活切换,一键实现算法二次开发
- 🔥 **2022.8.01:发布[PP-TinyPose升级版](./configs/keypoint/tiny_pose/). 在健身、舞蹈等场景的业务数据集端到端AP提升9.1**
- 新增体育场景真实数据,复杂动作识别效果显著提升,覆盖侧身、卧躺、跳跃、高抬腿等非常规动作
- 检测模型采用[PP-PicoDet增强版](./configs/picodet/README.md),在COCO数据集上精度提升3.1%
- 关键点稳定性增强,新增滤波稳定方式,使得视频预测结果更加稳定平滑
- 🔥 **2022.7.14:[行人分析工具PP-Human v2](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/pipeline)发布**
- 2022.7.14:[行人分析工具PP-Human v2](./deploy/pipeline)发布
- 四大产业特色功能:高性能易扩展的五大复杂行为识别、闪电级人体属性识别、一行代码即可实现的人流检测与轨迹留存以及高精度跨镜跟踪
- 底层核心算法性能强劲:覆盖行人检测、跟踪、属性三类核心算法能力,对目标人数、光线、背景均无限制
- 极低使用门槛:提供保姆级全流程开发及模型优化策略、一行命令完成推理、兼容各类数据输入格式
- 2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)
- 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),发布s/m/l/x版本,l版本COCO test2017数据集精度51.6%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。
- 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),提供s/m/l/x版本,l版本COCO test2017数据集精度51.6%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。
- 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。
- 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。
- 发布实时行人分析工具[PP-Human](deploy/pipeline),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。
- 新增[YOLOX](configs/yolox)目标检测模型,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%。
- 2021.11.03: PaddleDetection发布[release/2.3版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3)
- 发布轻量级检测特色模型⚡[PP-PicoDet](configs/picodet),0.99m的参数量可实现精度30+mAP、速度150FPS。
- 发布轻量级关键点特色模型⚡[PP-TinyPose](configs/keypoint/tiny_pose),单人场景FP16推理可达122FPS、51.8AP,具有精度高速度快、检测人数无限制、微小目标效果好的优势。
- 发布实时跟踪系统[PP-Tracking](deploy/pptracking),覆盖单、多镜头下行人、车辆、多类别跟踪,对小目标、密集型特殊优化,提供人、车流量技术解决方案。
- 新增[Swin Transformer](configs/faster_rcnn)[TOOD](configs/tood)[GFL](configs/gfl)目标检测模型。
- 发布[Sniper](configs/sniper)小目标检测优化模型,发布针对EdgeBoard优化[PP-YOLO-EB](configs/ppyolo)模型。
- 新增轻量化关键点模型[Lite HRNet](configs/keypoint)关键点模型并支持Paddle Lite部署。
- 2021.08.10: PaddleDetection发布[release/2.2版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2)
- 发布Transformer检测系列模型,包括[DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn)
- 新增Dark HRNet关键点模型和MPII数据集[关键点模型](configs/keypoint)
- 新增[人头](configs/mot/headtracking21)[车辆](configs/mot/vehicle)跟踪垂类模型。
- 2021.05.20: PaddleDetection发布[release/2.1版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1)
- [更多版本发布](https://github.com/PaddlePaddle/PaddleDetection/releases)
- 新增[关键点检测](configs/keypoint),模型包括HigherHRNet,HRNet。
- 新增[多目标跟踪](configs/mot)能力,模型包括DeepSORT,JDE,FairMOT。
- 发布PPYOLO系列模型压缩模型,新增[ONNX模型导出教程](deploy/EXPORT_ONNX_MODEL.md)
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> 简介
......@@ -86,7 +78,7 @@
- 欢迎加入PaddleDetection QQ、微信用户群(添加并回复小助手“检测”)
<div align="center">
<img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" />
<img src="https://user-images.githubusercontent.com/22989727/183843004-baebf75f-af7c-4a7c-8130-1497b9a3ec7e.png" width = "200" />
<img src="https://user-images.githubusercontent.com/34162360/177678712-4655747d-4290-4ad9-b7a1-4564a5418ac6.jpg" width = "200" />
</div>
......
......@@ -16,20 +16,36 @@ English | [简体中文](README_cn.md)
</div>
<div align="center">
<img src="docs/images/ppdet.gif" width="800"/>
</div>
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- 🔥 **2022.8.09:Release [YOLO series model zoo](https://github.com/nemonameless/PaddleDetection_YOLOSeries)**
- Comprehensive coverage of classic and latest models of the YOLO series: Including YOLOv3,Paddle real-time object detection model PP-YOLOE, and frontier detection algorithms YOLOv4, YOLOv5, YOLOX, MT-YOLOv6 and YOLOv7
- Better model performance:Upgrade based on various YOLO algorithms, shorten training time in 5-8 times and the accuracy is generally improved by 1%-5% mAP. The model compression strategy is used to achieve 30% improvement in speed without precision loss
- Complete end-to-end development support:End-to-end development pipieline including training, evaluation, inference, model compression and deployment on various hardware. Meanwhile, support flexible algorithnm switch and implement customized development efficiently
- Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), supporting s/m/l/x version, achieving mAP as 51.6% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
- Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
- Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
- Release [YOLOX](configs/yolox), supporting nano/tiny/s/m/l/x version, achieving mAP as 51.8% on COCO val dataset by YOLOX-x.
- 🔥 **2022.8.01:Release [PP-TinyPose plus](./configs/keypoint/tiny_pose/). The end-to-end precision improves 9.1% AP in dataset
of fitness and dance scenes**
- Increase data of sports scenes, and the recognition performance of complex actions is significantly improved, covering actions such as sideways, lying down, jumping, and raising legs
- Detection model uses PP-PicoDet plus and the precision on COCO dataset is improved by 3.1% mAP
- The stability of keypoints is enhanced. Implement the filter stabilization method to make the video prediction result more stable and smooth.
- 2021.11.03: Release [release/2.3](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.3) version. Release mobile object detection model ⚡[PP-PicoDet](configs/picodet), mobile keypoint detection model ⚡[PP-TinyPose](configs/keypoint/tiny_pose),Real-time tracking system [PP-Tracking](deploy/pptracking). Release object detection models, including [Swin-Transformer](configs/faster_rcnn), [TOOD](configs/tood), [GFL](configs/gfl), release [Sniper](configs/sniper) tiny object detection models and optimized [PP-YOLO-EB](configs/ppyolo) model for EdgeBoard. Release mobile keypoint detection model [Lite HRNet](configs/keypoint).
- 2022.7.14:Release [pedestrian analysis tool PP-Human v2](./deploy/pipeline)
- Four major functions: five complicated action recognition with high performance and Flexible, real-time human attribute recognition, visitor flow statistics and high-accuracy multi-camera tracking.
- High performance algorithm: including pedestrian detection, tracking, attribute recognition which is robust to the number of targets and the variant of background and light.
- Highly Flexible: providing complete introduction of end-to-end development and optimization strategy, simple command for deployment and compatibility with different input format.
- 2021.08.10: Release [release/2.2](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.2) version. Release Transformer object detection models, including [DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn). Release [keypoint detection](configs/keypoint) models, including DarkHRNet and model trained on MPII dataset. Release [head-tracking](configs/mot/headtracking21) and [vehicle-tracking](configs/mot/vehicle) multi-object tracking models.
- 2022.3.24:PaddleDetection released[release/2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)
- Release high-performanace SOTA object detection model [PP-YOLOE](configs/ppyoloe). It integrates cloud and edge devices and provides S/M/L/X versions. In particular, Verson L has the accuracy as 51.4% on COCO test 2017 dataset, inference speed as 78.1 FPS on a single Test V100. It supports mixed precision training, 33% faster than PP-YOLOv2. Its full range of multi-sized models can meet different hardware arithmetic requirements, and adaptable to server, edge-device GPU and other AI accelerator cards on servers.
- Release ultra-lightweight SOTA object detection model [PP-PicoDet Plus](configs/picodet) with 2% improvement in accuracy and 63% improvement in CPU inference speed. Add PicoDet-XS model with a 0.7M parameter, providing model sparsification and quantization functions for model acceleration. No specific post processing module is required for all the hardware, simplifying the deployment.
- Release the real-time pedestrian analysis tool [PP-Human](deploy/pphuman). It has four major functions: pedestrian tracking, visitor flow statistics, human attribute recognition and falling detection. For falling detection, it is optimized based on real-life data with accurate recognition of various types of falling posture. It can adapt to different environmental background, light and camera angle.
- Add [YOLOX](configs/yolox) object detection model with nano/tiny/S/M/L/X. X version has the accuracy as 51.8% on COCO Val2017 dataset.
- 2021.05.20: Release [release/2.1](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.1) version. Release [Keypoint Detection](configs/keypoint), including HigherHRNet and HRNet, [Multi-Object Tracking](configs/mot), including DeepSORT,JDE and FairMOT. Release model compression for PPYOLO series models.Update documents such as [EXPORT ONNX MODEL](deploy/EXPORT_ONNX_MODEL.md).
- [More releases](https://github.com/PaddlePaddle/PaddleDetection/releases)
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Introduction
......@@ -72,8 +88,8 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl
- Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det").
<div align="center">
<img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" />
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" />
<img src="https://user-images.githubusercontent.com/22989727/183843004-baebf75f-af7c-4a7c-8130-1497b9a3ec7e.png" width = "200" />
<img src="https://user-images.githubusercontent.com/34162360/177678712-4655747d-4290-4ad9-b7a1-4564a5418ac6.jpg" width = "200" />
</div>
## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Overview of Kit Structures
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册